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Executive Summary 
 
The SafetyNet project is set up to build a European Road Safety Observatory. 
The data assembled or gathered for the observatory consist of the Community 
database on Accidents on the Roads in Europe (CARE); data on road safety 
risk indicators; data on road safety performance indicators and in-depth 
accident data. Potential users will link data from different data-sets, consider 
different levels of aggregation jointly, and analyse the development over time.  
Work package 7 (WP7) is set up to deal with statistical and conceptual issues 
that come into play when analysing such complex data structures.  
 
One of WP7’s main objectives is to develop a best practice advice for the 
analysis of data structures that require more than the standard statistical tools. 
This best practice consists of D7.4 “Multilevel modelling and time series 
analysis in traffic research – A methodology” and D7.5 “Multilevel modelling and 
time series analysis in traffic research – The manual”.    
 
The main goal is to enable the reader to deal with complex data structures that 
show dependencies in space (nested data) or in time (time series data). At first 
it is demonstrated how such dependencies can compromise the applicability of 
standard methods of statistical inferences, because they can lead to an 
underestimation of the standard error and consequently of the error in statistical 
tests. 
 
As a solution to this problem, two families of statistical techniques are presented 
to deal with these dependencies. Multilevel Modelling is dedicated to the 
analysis of data that are structured hierarchically. It offers the possibility to 
include hierarchical structures into the model of analysis. In road safety 
research, multilevel analyses allow for the introduction of exposure data and of 
safety performance indicators, even if those are not specified at the same level 
of disaggregation as the accident data themselves. In this way, multilevel 
analyses allow a global and detailed approach simultaneously. Time series 
analyses are employed to overcome dependency issues in time-related data. 
They allow describing the development over time, relating the accident-
occurrences to explanatory factors such as exposure measures or safety-
performance indicators (e.g., speeding, seatbelt-use, alcohol, etc), and 
forecasting the development into the near future. 
 
Deliverable 7.5 contains the manual to support the methodology D7.4, where 
the theoretical background for these two families of analyses is given. For each 
technique described in the methodology, this manual presents the instructions 
to fit the models on the basis of user friendly software, as well as guidelines for 
interpreting the results. The aim of the manual is to enable the reader to 
conduct all analyses described in the methodology and this way to get hands on 
experience in the analysis of road safety data. To enable the reader to track 
every step presented, the data sets discussed in the various sections are 
available. 
 



Chapter 1 - Introduction 
Heike Martensen and Emmanuelle Dupont (IBSR) 

 
This deliverable has been produced in Workpackage 7 (WP7) of the SafetyNet 
project.  WP7 is set up to deal with statistical and conceptual issues that come 
into play when analysing complex data structures as they arise in road safety 
research when combining data from different sources or when considering data 
that have been collected over a long timespan. One of its main objectives is the 
development of a best practice for the analysis of data structures that require 
more than the standard statistical tools.  
 
This best practice consists of D7.4 “Multilevel modelling and time series 
analysis in traffic research – A methodology” (subsequently, simply “the 
methodology-report”) and the present deliverable. This document contains the 
practical instructions to support the methodology, where it has been described 
how to deal with data that are dependent in space (nested data) or in time (time 
series data). It has been demonstrated how such dependencies can 
compromise the applicability of standard methods of statistical inferences, 
because they lead to an underestimation of the standard error and 
consequently of the probability to classify a result as significant that is in fact 
due to chance. 
 
Two families of statistical techniques have been presented to deal with these 
dependencies. Multilevel Modelling is dedicated to the analysis of data that are 
structured hierarchically and Time Series analyses are employed to overcome 
dependency issues in time-related data. The methodology is organized in two 
main chapters, focussing on multilevel modelling (Chapter 2) and time series 
analysis (Chapter 3) respectively.  
 
For those sections in the methodology where models dedicated to multilevel 
analysis or to time series analysis are presented, this manual presents the 
instructions to fit each model on the basis of user friendly software, as well as 
guidelines for interpreting the results. The aim of this document is to enable the 
reader to conduct all analyses described in the methodology and this way to get 
hands-on experience in the analysis of road safety data. To enable the reader 
to track every step presented, the data sets discussed in the various sections 
are available. The data are included as a CD and will be available at the 
SafetyNet website (www.erso.en/safetynet.htm). 
 
This manual is not a stand-alone document. It is intimately related to the 
methodology and its sections were written under the assumption that the 
respective part of the methodology report is known. To allow an easy matching 
of methodology report and manual sections, the numbering in the manual is the 
same as that in the methodology report. Some sections in the methodology 
report, however, do not contain data examples or the models presented employ 
traditional techniques rather than multilevel or dedicated time series models. 
For these latter sections there is no counterpart in this manual. As a 
consequence, some sections in the manual are rather short, their main purpose 
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being, to allow the numbering to continue in the same way as in the 
methodology report. In Figures 1.1 and 1.2, the structure of Chapters 2 and 3 is 
presented. Sections that are represented by a colourless box are present in the 
methodology report, but there is no corresponding example in this manual. 
 

 

Figure 1.1: Structure of multilevel models presented in Chapter 2. Note: Sections 
represented in white are present in the methodology report but have no corresponding 
example in this manual. 

 
Chapter 2 starts with a short description of the principles of multilevel modelling 
and a software overview in 2.1. Section 2.2 is dedicated to modelling of 
continuous responses and section 2.3 to the modelling of discrete responses. 
Section 2.4 presents an example for a multivariate model and section 2.5 for a 
model for longitudinal data.  
 



  Introduction  
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Figure 1.2: Structure of multilevel models presented in Chapter 3. Note: Sections 
represented in white are present in the methodology report but have no corresponding 
example in this manual. 

 
Chapter 3 starts with a short introduction to time series analysis and a software 
overview (3.1). Section 3.2 describes traditional regression analyses models. 
Traditional regression analyses models were chosen because they are probably 
the best known type of model, and are often used in the time series context. 
Special attention is paid to diagnostic tools that serve to detect possible 
violations of the assumption when dealing with time series data and the 
possibilities to solve these problems within the traditional framework. In sections 
3.4 to 3.6 of the methodology report models dedicated to time series analyses 
are presented. In the end, these models can be categorised into two classes, 
one group, including DRAG type modes, that can be seen as variants of so-
called ARMA-type models and another group of decomposition models that can 
be regarded as members of state space models. In this manual there are two 
extensive sections on ARMA-type models (3.5) and on state space models (3.6) 
respectively. Both contain many empirical examples and detailed instructions 
for their implementation. 
 
Chapter 4 presents an overview of the methods presented and the examples 
used.  
 



Chapter 2 - Multilevel Modelling 
 

2.1 Introduction 

Heike Martensen and Emmanuelle Dupont (IBSR) 

 
As described in more detail in the methodology report, in traditional regression 
analyses a dependent variable (y) is predicted by a combination of one or more 
independent variables (x1, x2, …), such that y can be modelled by equation 
2.1.1. 

 
ii exbxbby ++++= ...22110
 (2.1.1) 

 
with i being the index of the subjects of study (e.g. accidents, persons, etc.). 
 
As examples, injury severity in an accident can be predicted by the speed of 
collision or accident frequency can be predicted by the number of alcohol 
controls and the number of speed infringements. Of course, these predictions 
are never perfect. Everything that is not predicted is assumed to be due to the 

randomly distributed error ie . 

 
One of the most important assumptions upon which the traditional analyses are 

based is the independence assumption, stating that the residuals, the ie ’s, are 

independently distributed across all units. Hierarchical structures or nested data 
often cause the independence assumption to be violated. In hierarchies, the 
cases within one group are often more similar to each other than the cases in 
another group. These hierarchical structures have to be represented in the 
model of analysis, because otherwise the residuals (the variation that cannot be 
explained by the model) will show the same structure and will therefore not be 
independently distributed. Examples for such hierarchies are presented in the 
remainder of the document. To name just a few: In section 2.2 speed data are 
presented that are collected at a number of randomly selected road sites. The 
speed of cars at the same road site is jointly influenced by a large number of 
factors and therefore cars at the same road site are more similar in speed than 
between different road sites. In sections 2.3.2 and 2.3.3 data on driving under 
alcohol influence are presented. Again the probabilities of having drunk are 
more similar for drivers at the same road site as compared to drivers at different 
road sites. In sections 2.3.4 and 2.4 the fatalities for counties in Greece are 
presented and it is demonstrated that the numbers of fatalities as well as the 
effect of certain measures (alcohol and speed controls) vary across regions. 
 
Multilevel modelling offers the possibility to include hierarchical structures into 
the model of analysis by allowing random variation at each level of the model. 
Multilevel models also allow the effect of predictor variables to vary across 
higher level units. In the present chapter, multilevel models are presented for 
continuous data (section 2.2), dichotomous data (section 2.3.2), and count data 
(section 2.3.4). Moreover it is demonstrated how multilevel models can be used 
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to establish a multivariate data structure (section 2.4) that can also be used for 
multinomial responses (section 2.3.3) and repeated measurement data (section 
2.5). 
 
The multilevel models are all implemented with the MLwiN software (Rasbash, 
Steele, Brown, & Prosser, 2004, www.mlwin.com), dedicated to multilevel 
modelling. The reason that this software was chosen is its high educational 
value. In MLwiN (Rasbash et al., 2004), the model formulation is menu-based 
and can therefore be mastered easily without studying a programming 
language. The analyses are presented in the form of model equations, allowing 
a good understanding of the model built. Another advantage of this software is 
the presence of diagnostic methods tailored to multilevel modelling. Most 
notably, residuals can be studied at each of the levels included in the model. 
The program also has excellent plotting functions with an interface that is easy 
to use, encouraging a thorough inspection of raw data, model predictions, and 
residuals. The output of the analysis is also presented in the framework of 
model formulation: the parameters in the model equations are simply replaced 
by their estimates. This presentation allows maximal understanding of the role 
of each parameter, and of its possible interpretation. 
 
The downside of this very educational interface is its impracticality: no tables 
are provided as output, the text in the Equations window cannot be copied; 
there is no way to export the resulting estimations but to simply type them over. 
The program is in fact so educational that it forces the user to conduct 
him/herself many of the calculations necessary for interpretation (variance 
partition coefficients, test statistics). This policy of not allowing the user to 
simply take some output without understanding how it came about, can become 
very tedious once one has passed the initial phase of trying to understand the 
models and that one simply wants to carry out some routine analyses. 
 
HLM (Bryk, Raudenbush, & Congdon, 1996) is also a special purpose statistical 
package that will fit many kinds of multilevel models. It has been under active 
development since the mid 1980s and is now distributed by Scientific Software 
International (SSI, www.ssicentral.com).  
 
The MIX project (Hedeker & Gibbons, 1996 a, b) is a collection of programs for 
multilevel techniques, including mixed-effects linear regression, mixed-effects 
logistic regression for nominal or ordinal outcomes, mixed-effects probit 
regression for ordinal outcomes, mixed-effects Poisson regression, and mixed-
effects grouped-time survival analysis. The programs can be downloaded from 
http://tigger.uic.edu/~hedeker/mix.html.  
 
WINBUGS is a software that uses Bayesian estimation algorithms (MCMC, see 
section 2.7.2 in the Methodology report). Models are represented by a flexible 
language. Additionally it allows the user to specify their model on a graphical 
interface. 
 
Multilevel modelling can also be carried out in R (http://cran.r-project.org) or its 
commercial version S-Plus (www.insightful.com/). These programs allow most 
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of the functions present in MLwiN but without its easily accessible user 
interface.  
 
The standard statistical software packages allow multilevel modelling to some 
extent. Most notably SAS, allows the estimation of all models presented in this 
document (Littell, Milliken, Stroup, and Wolfinger, 1996). However, it does not 
enable the detailed diagnostics tailored to these models. SPSS only allows the 
estimation of linear multilevel models. An excellent collection of reviews how to 
implement multilevel models in a wide variety of statistical software can be 
found on the MLwiN website (www.mlwin.com/softrev/index.html). 
 
Within the present chapter on multilevel modelling, there is a build-up of 
information about the use of MLwiN. The chapters on linear models form an 
introduction to MLwiN and some of its possibilities as well. They contain very 
detailed information how to address the functions and how to interpret the 
output. In later chapters this information is more compressed. This all said, the 
focus of this document is not to learn to deal with MLwiN (for all details the 
reader is referred to the MLwiN manual by Rasbash, Steel, Brown, & Prosser, 
2004) but to get a practical introduction to the multilevel analysis of road safety 
data. 
 



2.2 Multilevel linear regression models  

Heike Martensen and Emmanuelle Dupont (IBSR) 

 

2.2.1 Basic two level random intercept and random slope 
models 

 
The example data used in this and the following section are based on a national 
speed survey conducted in Belgium. The speed of 4994 cars was “measured” at 
131 randomly selected road sites. Additionally, the length of each car was 
recorded. The question pursued here, is whether there is a relation between the 
speed and the length of the car (considered here as rough indicator of its 
engine power). The data contain the following variables: 
 
IDlocation Identifies the road site (i.e. the location) 
IDsubject Identifies the subjects, i.e. the individual cars within each 

location 
Speed Indicates the speed of that car 
Length Indicates the length of that car 
LengthCentred Indicates the length of that car minus the average length 
LengthCat Indicates whether a car is shorter (0) or longer (1) than 4.3m 
TrafficCount Indicates the number of cars passing a road site during 

measurement 
TrafficCountCat Indicates whether fewer (0) or more (1) than 100 cars passed 
Province The Belgian Province in which measurement has taken place 
 
 

Data load 

 
To begin with, we will import the data from Excel. 

• Open MLwiN 

• Open the data file (SPEED.xls) in Excel 

• Select all columns (ctrl A) and copy them (ctrl C) in Excel 

• Go to MLwiN, press Ctrl V 
The following window appears: 
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• Check “Use First row as names” in the lower left corner of the Paste View 
Window 

• Click on “Free Columns” (this assigns the first free columns in MLwiN to the 
imported data) 

• Click on “Paste” 

• Close the paste window 

• Select “File” in the top menu bar and save the worksheet you just created 
 
The centre of MLwiN is the Equations window, where the models that you want 
to fit to the data are built. 

• Click on “Model” in the menu bar and select “Equation” 

• Click on “Notation” at the bottom of the Equations window 

• Uncheck “General” (this changes the notation from the General-linear-model 
notation to the linear-model notation) 

• Click “Done” 
 

2.2.1.1. An “empty” single-level model 

The first model built is one that ignores the hierarchical structure in the data. It 
includes only one level, that of the individual cars (IDsubject). This model, 
containing only an intercept and no predictors will be used as a point of 
reference. 
 

Model formulation 

Define the dependent variable:  

• Click on the “y” and  
� Select “Speed” from the drop-down menu as dependent 

variable 
� Select “1-i”from the N-levels drop-down menu 
� Select “ID-subject” from the level 1(j) drop-down menu 



  2.2 Linear multilevel models 

 

 

  
P r o j e c t  c o - f i n a n c e d  b y  t h e  E u r o p e a n  C omm i s s i o n ,  D i r e c t o r a t e - G e n e r a l  T r a n s p o r t  a n d  E n e r g y  

 

Page  1 3  

� Click “done” 
 
The specified model includes only one random-term (ei) and so far only an 
intercept. If your Equations window does not look like this,  
 

 
 
click “Estimates” at the bottom of the Equations window. This changes back and 
forth between three views: 

- the parameter names (e.g. β0) 
- the parameter names in colour coding  
- the estimates for each parameter with their Standard Errors in 
 parenthesis. 
 

Colour coding of the parameters indicates their status: 
- red: not yet specified 
- blue: specified but not yet estimated  
- green: estimation is complete 

 

• Click “Estimates” until you see blue numbers in the equation.  

• Press “Start” in the upper left corner of the MLwiN Window to start the 
estimation procedure  

The Estimation is concluded when the numbers turn from blue to green. 
 

Results and Interpretation 

 
 
In this simple model, only two parameters are estimated (you can tell, because 
there are only two green numbers): the intercept, here simply the overall mean 
of Speed, and σ2

e the variance of the individual error-term ei. The error ei 
denotes the derivation of each individual (i.e. the cars) from the model, here 
simply the variance of the complete sample. Behind each parameter estimate, 
its standard error is indicated in parenthesis. To be significant, a parameter 
estimate has to be at least twice as large as its standard error. (To be more 
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exact, the parameter estimate divided by its standard error is z-distributed. A Z-
value of 1.96 indicates a two-tailed probability of 0.05). The third line of the 
output shows the deviance of the model (the -2loglikelihood). This value 
indicates how well the model fits the data. The smaller it is, the better the model 
fits. It is used to compare models. We will come back to that later. 
 
A practical tip: MLwiN makes building different models very easy. It does, 
however, not allow to eyeball the results for two different models in parallel. As 
a solution we suggest to use a viewing software like Irfan (freeware) to produce 
and save screenshots of the models you build: Start IrfanViewer, click on 
Options in the menu-bar and select Capture/Screenshots. Press “Start” and 
close the window (but not the program!). Now go to the equations-window of 
MLwiN and press Ctrl-F11. Irfan now keeps a picture of your model and 
overwrites it (unless you save it) when you press Ctrl-F11 again.  
 

2.2.1.2. An “empty” two-level model 

Values measured at the same location can be expected to be more similar to 
each other than to values measured at different locations. To include this 
hierarchical structure in the model, we will now define a two-level model with the 
cars (ID-subject) constituting the first level and the road sites (ID-location) 
constituting the second. 
 

Model formulation 

First define the dependent variable (Speed) as varying over two random factors, 
namely the individual cars (IDsubject) and the location of measurement 
(IDlocation) 

• Click on the dependent variable and define IDlocation as the second level as 
shown below. 

 
 
Then define a variance component model by allowing the intercept to vary 
randomly across locations.  

• Click on the intercept 

• Check the box j(IDlocation) 

• Press “Done” 

• Press “Start” to estimate the parameters 
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Results and Interpretation 

Your Equations window should now look like this. 

 
The model has two parts; the first equation corresponds to the individual car 
level (Level 1), the second equation to the level of the locations (Level 2). 
Instead of an overall intercept β0, the intercept β0j varies across locations. The 
mean value (68.688), indicated in the second equation, gives the mean speed 
across all road sites. 
 
Two error-variances are estimated: σ2

u0 is the variance of uoj, the location error 
term in the second equation. This location error-term uoj indicates the derivation 
of each location-intercept from the mean intercept estimated in the second 
equation. σ2

e is the variance of eij, the individual error term in the first equation. 
 
σ2

u0, the variation between locations, is highly significant and much larger than 
σ2

e, the variation within locations. The variance partition coefficient ( σ2
u0/( 

σ2
u0+ σ2

e)) is .75 indicating that 75% of the total variance is due to variations 
between the level-two units (here the locations). 
 
The deviance is now by a factor 10 smaller than that of the single-level model. 
The difference between  the  two deviances (in this case 464737) is Chi-square 
distributed with the difference in numbers of parameters as degrees of freedom 
(in this case one, because the two-level model estimates one parameter more 
than the one-level model). As a guideline, the expected value for a Chi-squared 
distribution is equal to the degrees of freedom, so there is little doubt that 
464737 significantly exceeds this value. For a formal check, click on “Data 
Manipulation” in the top menu bar and select “Tail Areas”, select “Chi-squared”, 
fill the X2-value (464737) and the degrees of freedom (1) in and press 
“Calculate”. 
 
To conclude, both the variance partition coefficient and the deviance test both 
strongly suggest that a two-level structure describes the data more adequately 
than a single-level structure. 
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Graphic inspection of the residuals: Level 1 

To inspect the residuals of the model, 

• Click on Model in the top menu bar 

• Select Residuals 

 
 

• Click “Calc” to calculate the Level 1 residuals 

• Select “Plot” at the top of the Residuals window 

• Check radio-button in front of “standardised residual and normal score” 

• Click “Apply” 
 

 
 

Graphic inspection of the residuals: Level 2 

 

• Go back to the “Settings” part of the residuals window 

• Select “2:IDlocation” from the “level” dropdown list 



  2.2 Linear multilevel models 
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• Click “Calc” to calculate the Level 2 residuals 

• Select “Plot” at the top of the Residuals window 

• Click “Apply” 

 
Normally distributed residuals would result in straight lines. Obviously this is not 
the case. A log-transformation (lnSpeed) could help normalize the speed 
distribution. The transformed value would, however, make the interpretation 
more difficult. Therefore, for the sake of clarity of interpretation the non-
transformed speed variable is kept here. As an exercise, the reader is advised, 
however, to repeat the analyses presented here with the log-transformed speed 
variable (lnSpeed) as an exercise. 
 

2.2.1.3. A Two-level variance component model with predictor length 

Next, include the length of a car as a predictor for its speed. Rather than 
including the absolute length, include LenthCentred, the length of the car 
centred to its mean. 
 

Model formulation 

• Click “Add  Term” at the bottom of the Equations window 

• Select “LengthCentred” from the “Variable” drop-down window 

• Click “Done” 

• To estimate this model press “Start” 
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Results and Interpretation 

 
The intercept β0j now presents the average speed at LengthCentred = 0 (i.e. for 
a car of average length) and the coefficient in front of LengthCentred indicates 
its slope: the change in speed per unit of length (here meters). The deviance (-
2*loglikelihood) decreased by 70, i.e. the introduction of car length as a 
predictor significantly improved the model. 
 

2.2.1.4. Two-level random intercept, random slope model 

To investigate whether the relation between speed and the length of a car was 
the same at all measurement locations, the slope of Length will now be allowed 
to vary randomly across locations too. 
 

Model formulation 

• Click on the Length 

• Check the box j (IDlocation) 

• Estimate the parameters by clicking on “Start” 
 

Results and Interpretation 
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The model now has three parts; the first equation specifies the level of the 
individual cars and the other two the level of the locations. Both, the intercept β0j 
and the coefficient of Length β1j are now varying across locations with the 
means indicated in the second and third equation. 
 
The location variance has now become a variance-covariance matrix Ωu: The 
upper left number is σ2

u0, the variance of the intercepts across locations. It 
indicates how much the general level of “Speed” varies between groups. The 
lower right number is σ2

u1, the variance of the coefficient for Length across 
locations. It shows to what extent the relation between “Speed” and 
“LengthCentered” varies between groups. The lower left number is the 
covariance between the two, indicating to what extent there is a relation 
between the intercept (i.e. the general level of “Speed”) and the slope (i.e. the 
strength of the relation to “LengthCentred”) across locations. While the two 
variances can only be positive, the covariance can be positive or negative. A 
positive covariance indicates that larger intercepts are associated with larger 
slopes. The opposite is true for a negative covariance. 
 
The deviance decreased by 181 as opposed to the variance component model, 
indicating that there is indeed substantial variation across locations in the effect 
that length has on speed. This also becomes apparent in the fact that the 
variance of the slope is significant. However the covariance between slope and 
intercept is not, indicating that there is no relation between the average level of 
speed (i.e. the intercept) and the length effect (i.e. the slope). 
 

Graphic inspection of the model predictions 

To interpret the results it can often help to make use of MLwiNs great graphical 
functions. In this case we will plot the predicted speed values for each location. 
To do so, we have to save the model-predictions as a new variable first. 
 

• Select “Model” in the top menu bar and click on “Predictions” 

• Click on all parameters in the lower half of the appearing dialogue window 
(so that they turn from grey to black) 

• Select an empty column (e.g. c10) for “output from prediction to” 

• Click on “Calc” 

• Now you can close the “Predictions” window 
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Now we have created a variable that contains the predictions of the model, 
which we are going to plot against the length.  
Open the graph dialogue by clicking on “Graph” in the top menu bar and by 
selecting “Customized Graphs”. Fill in as shown below (all changes have to be 
made in the drop-down lists on the right-hand side and appear automatically in 
the left-hand side table) 
 

 
• Press “Apply” to create the graph (You can close the Dialogue Window 

then.) 
 
The resulting graph shows separate regression lines for each location. 
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The size of σ2

u0 (the intercept-variance across locations) is reflected by 
variations in the height of regression lines and the size of σ2

u1 (the slope-
variance across locations) in variation in their steepness. The size of σu01 (the 
covariance between intercept and slope) would be reflected in the fact that lines 
that are on a higher level all-together (larger intercept) tend to be more or less 
steep than those at the bottom of the graph. As the covariance is not significant 
here, it is however not possible to see such a tendency. 
 

2.2.1.5. Adding a categorical predictor 

To demonstrate how a categorical predictor can be included into the model, the 
continuous variable LengthCentred will be replaced by a categorical one 
(LengthCat) that simply indicates whether the length of a car is below (0) or 
above (1) average. The first step is to define this variable as categorical rather 
than continuous.  
 

Model formulation 

• Click on “Data Manipulation” in the top menu bar and select “Names” 

• Select LengthCat  

• Click “Categories” 

• Define the categories as shown below (simply start typing after you clicked 
on each field) 

• Press “Apply” 

• Close the “Names” window 
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• Remove LengthCentred by clicking on the term and than on “Delete Term” 

• Include LengthCat with “Add Term”  
� Choose “<=4,3m” as the reference categorie 

• Estimate the model 
 

Results and Interpretation 

 
 
The coefficient of speedCat indicates that long cars go 4.97 km/h faster than 
short ones. The other parameters are very similar to the model in 2.2.1.3 with 
length as a continuous predictor.  
 
As the next step the categorical speed effect is allowed to vary randomly across 
locations.  
 

Model formulation 

• Click on the coefficient for SpeedCat 

• Check “j(IDlocation)” 

• Click “Done” 

• Start the estimation by clicking “Start” 
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Results and Interpretation 

 
 
Contrary to the model in 2.2.1.4, with Length as a continuous predictor, the 
covariance between intercept and slope is now significant. Its negative value 
indicates that the difference between long and short cars is smaller at locations 
with a high overall speed level (i.e. a large intercept) as compared to locations 
with a low overall speed level. The decreased deviance value (45218-44963 = 
255) is highly significant indicating that the effect of speed is indeed not 
constant across locations. 
 

2.2.1.6. Adding a contextual variable 

One of the advantages of multilevel models is the possibility to include 
predictors situated at different levels simultaneously in the model. As an 
example of a higher level variable, the traffic count for each road site will be 
taken up into the model as a contextual predictor (that means it does not vary 
across Level 1, but only across higher level units, here the locations). The 
variable TrafCountCat takes the value 0 for each road site with fewer than 100 
cars passing during observation and 1 for road sites on which more than 100 
cars passed. 
 

Model formulation 

First go back to model 2.2.1.4, the random slope model with the continuous 
length variable:  

• Delete LengthCat from the equation 

• take up LengthCentered again 

• make the effect of LengthCentred vary randomly across locations 
 
Now add the context variable 

• Include TrafCountCat into the equation with “Add Term”. 
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o Select <=100 as the reference category 
 

Results and Interpretation 

 
 
The coefficient for trafficCount, category “>100” indicates that at road sites with 
more than 100 cars passing, cars went on average 33.2 km/h faster than on 
road sites with fewer than 100 cars passing. The coefficient is highly significant. 
Moreover the deviance is reduced by 385 as opposed to the model in 2.2.1.4. 
Both indicates that the number of cars passing at a road sites is a good 
predictor of speed at that road site. 
 

2.2.1.7. Testing for a cross-level interaction 

In order to test whether the context variable trafficCount modifies the length-
effect at the level of the individual cars, the interaction between TrafficCountCat 
and LengthCentred is added to the model. 
 

Model formulation 

• Click on “Add term” and  

• Include the interaction between LimitCat and LengthCentred as shown 
below 

� Select order 1 (this means it is a first-order interaction) 
� Choose again <=100 as reference category for 

TrafficCountCat 

• Estimate the model 
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Results and Interpretation 

 
 
The coefficient for the interaction (lengthCentred.>100) is clearly not significant, 
as it is much smaller than its standard error in parenthesis. The negligible 
weight for this interaction indicates that the length effect at road sites with more 
than 100 cars passing were not different from those at road sites with fewer 
cars passing. The same message is conveyed by the likelihood that did not 
decrease from the model in 2.2.1.6 to the present model, suggesting that 
adding the interaction introduces complexity that does not explain anything. 
 
To conclude, the speed of cars varies more between road sites than within 
them. Accordingly, speed is affected by a level-1 variable (length) to some 
extent, but much more so by a level-2 variable. The effect of length is not 
modified by the traffic count. 
 

2.2.1.8. Conclusion 

In this chapter it was demonstrated how to extend a linear regression model to 
a multilevel structure. It was demonstrated how the variance partition coefficient 
and the deviance test can be used to establish the appropriateness of the 
multilevel structure and how predictions and residuals at these different levels 
can be presented graphically. Moreover, it was explained how effects of level-1 
predictors (here the length of a car) can be considered together with predictors 
at higher levels (here the traffic count at the measurement location) and how an 
interaction between variables at different levels can be investigated. 
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2.2.2 Three level models and more 

The research example concerning speed measurement at Belgian road sites is 
continued here. Each location of measurement is not only characterised by the 
characteristics of the road site in question but also by the Province (Belgian 
regions with limited governmental responsibilities) it was situated in. To 
investigate whether this hierarchical structure is also represented in the data, a 
three level model will be fit. 
 

Data-load 

Open the worksheet you created in the previous section or paste the data from 
Excel, as described there. Before including a higher level, the data have to be 
resorted. In general, the data have to be sorted by all levels included (save the 
lowest one, here IDsubject, which is simply indicated by the rows in the data 
file). The data imported from Excel are sorted according to the two-level 
structure, i.e. by IDlocation and then by IDsubject. In order to include Province 
as a third level, they have to be sorted by Province, then IDlocation, and then 
IDsubject (note that the order in sorting is opposite to the numbering of the 
levels). 
 

• Click on “Data Manipulation” in the top menu bar and select “Sort” 

• Select 3 for “Number of keys to sort on” 

• Select Province, IDlocation, and IDsubject as key codes 

• Mark all variables in the “Input columns” list 

• Click on “Same as input” so that the same columns appear in the “Output 
column” list 

• Click on “Add to Action List” 

• Click on “Execute” 

• Close the Sorting Dialogue 
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2.2.2.1. A three-level variance component model 

The first three-level model to test would always be the variance component 
model in which the intercepts but not the slopes vary across the levels. 
 

Model formulation 

Define the dependent variable (Speed) as varying over three random factors, 
namely the individual cars (IDsubject), the location of measurement 
(IDlocation), and the province. 

• Click on the dependent variable and define as shown below 

 
 
Then define a variance component model by allowing the intercept to vary 
randomly across locations and take up LengthCentred as a predictor.  

• Click on the intercept 

• Check the box j(IDlocation) 

• Check the box k(Province) 

• Press “Done” 

• Include LengthCentred as a predictor with “Add Term” 

• Press “Start” to estimate the parameters 
 

Results and Interpretation 

 
 
The intercept β0jk now varies across locations and provinces, resulting in the 
estimation of three variances: σ2

v0 is the variance of uok, the derivation of each 
pronvince’s intercept from the mean intercept. σ2

u0 estimates the variation of the 



Chapter 2 

 

intercept between locations but within the provinces and σ2
e is the variance of 

eij, the individual error term in the first equation.  
 
The deviance of this three-level model as compared to the two-level variance 
component model presented in 2.2.1.3 decreased by 24, which is significant 
(p<.000). This suggests that the introduction of the three-level structure is 
justified. Note, however, that σ2

v0, the variance at level 3 (i.e. the variance of the 
intercept across provinces), is only marginally significant. (To test this, click on 
“Basic Statistics”, select “Tail Areas”, check “Standard Normal Distribution”, 
divide the parameter estimate 218 by its standard error 132.9 and fill this value 
in the slot next to “Value”. Press calculate. The resulting p value is .051). In 
contrast, the level-2 variance, σ2

u0, and the level-one variance, σ2
e , are both 

clearly significant. 
 
Another way to estimate the importance of each level is to calculate the 
variance component coefficients for Level 2 (σ2

u0/ σ
2
e+ σ2

u0+ σ2
v0 = .60) and for 

Level 3 (σ2
v0/ σ

2
e+ σ2

u0+ σ2
v0 = .13). 

 
These results place the third level somewhere in a grey zone: The model 
including the third level fits the data better than the two-level model (suggesting 
that there is variation between the provinces that make up the third level), but at 
the same time, the variance of that third level is not significant. The variance 
component coefficients indicate that the largest part of the variation is situated 
at the level of the road sites (60%) and only a small part is situated at the level 
of the provinces (13%). One can conclude that there is some variation between 
provinces but that the variation between the locations is much more important. 
 

2.2.2.2. A three-level model with a random slope at Level 2 

From the two-level model in 2.2.1.4 we already know that the effect of car 
length varies across locations. Accordingly, the next model to estimate is the 
three-level model including a random slope for length at Level 2. 
 

Model formulation 

• Click on the Length 

• Check the box j (IDlocation) 

• Estimate the parameters by clicking on “Start” 
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Results and Interpretation 

 
 
The variance of the intercept across provinces σ2

v0 is still only marginally 
significant (p=.053). For the rest the estimates look very similar to the output of 
the two-level model (see section 2.2.1.4). There is a lot of variation in the 
intercept across locations, a small but significant amount of variation in the 
slope of length across locations and no significant covariation between slope 
and intercept. The introduction of a random slope for speed decreased the 
deviance by 290, which is highly significant. 
 

2.2.2.3. A fully random three-level model 

As a last step, the effect of speed will be allowed to vary randomly not only 
across locations but also across provinces. 
 

Model formulation 

• Click on the Length 

• Check the box k (province) 

• Estimate the parameters by clicking on “Start” 
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Results and interpretation 

 
 
The results now contain two variance-covariance matrices: Ωv and Ωu. Ωv  
indicates the variance and covariance of intercept and slope across provinces 
and Ωu  across locations. The variance-covariance matrix for the locations is still 
relatively unchanged as compared to the two-level model (2.2.1.4). For 
provinces, the intercept variance is still only marginally significant. The slope 
variance and the slope/intercept covariance that have been added to the model 
are clearly not significant (to be significant at the .05-level they would have to 
exceed twice the size of their standard error, which is clearly not the case). The 
conclusion that this last extension of the model was not necessary is confirmed 
by the deviance test. Although the present model estimates two extra 
parameters, the deviance is exactly the same as that of the simpler model with 
the length effect only varying at the level of the locations. 
 
To conclude, the speed of cars has shown to vary substantially across 
measurement locations and only to a limited extent across provinces. There is a 
relation between the length of a car and its speed and this relation varies across 
measurement locations but not across provinces. The introduction of a third 
level has proven of limited use. Not only is the variation attributed to this level 
very limited, but moreover the results for the other levels were almost exactly 
the same as in the two-level models. 
 

2.2.2.4. Conclusion 

It has been shown how to extend the two-level models presented in section 
2.2.1 to three level models. It has also been demonstrated how to investigate 
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whether the additional level improves the model and in the present case it has 
been concluded that a two-level model would be sufficient. 
 



2.3 Discrete response models 

2.3.1 Introduction  

In the methodology report the section for discrete responses is introduced by 
outlining the generalised linear models (GLM) and their hierarchical version, the 
multilevel GLM.  As there is no empirical example in the introduction of the 
GLM, there is no corresponding manual section. In the following sections, the 
analysis of general binomial responses (2.3.2), multinomial responses (2.3.3) 
and counts (2.3.4) will be presented. All these analyses are instances of the 
multilevel GLM. 
 

2.3.2 Binary and general binomial responses 

Heike Martensen and Emmanuelle Dupont (IBSR) 

 
The example data used in this section were gathered in a Belgian drink driving 
roadside survey. At 413 randomly selected road sites 11,186 drivers were 
stopped, asked to perform an alcohol breath test and to answer a number of 
questions. The data contain the following variables: 
 
DrinkDriving Was the alcohol concentration of the driver above the legal limit 

of .05 g/l? Yes=1, No=0. 
ID_ind Identification number of each driver tested. 
ID_loc Identification number of each test location. 
Gender Gender of the driver: Male =1, Female =2. 
Age A categorical variable: 16-25=1, 26-39=2, 40-54=3, 55+=4. 
Previously Has the driver been tested for alcohol at a roadside control 

previously? Yes=1, No=0. 
Probability How high does the driver estimate the probability of being 

stopped for an alcohol control? Very Low=1, Low=2, Medium=3, 
High=4, Very High=5. 

TrafficCount The average number of cars passing the test site within 15 
minutes. 

Intensity The number of control officers present divided by TrafficCount. 
 

Data load 

• Click on “File” in the top menu bar and select “Open worksheet”. 

• Open “ALCOHOL.ws” 
 
Two constant variables (“denom” and “cons”) are necessary for building a 
model for binary data. To generate these variables, 

• Click on “Data Manipulation” and select “Generate Vector” 

• Select “Constant Vector” as type of vector 

• Select an empty output column (e.g. c30) 

• Fill in the number of cases (11,186) at “Number of Copies”  

• Fill in “1” at “Value” 
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• Click “Generate” 

• Select another empty output column (e.g. c31) 

• Click “Generate” again 

• Close the “Generate Vector” dialogue window 

• Click on “Data Manipulation” and select “Names” 

• Select the first variable just generated (i.e. c30) 

• Type “cons” in the field at the top of the window and press return 

• Name the second variable just generated (i.e. c31) “denom” 
 
 

Model formulation 

Define the dependent variable  

• Click on the “y” and  
� Select “DrinkDriving” from the drop-down window as 

dependent variable 
� Select “2-ij”from the N-levels drop-down window 
� Select “ID_loc” from the level 2(j) drop-down window 
� Select “ID_ind” from the level 1(i) drop-down window 
� Click “done” 

• Click on the N in the Distribution statement for DrinkDriving and 
� Check “Binomial” 
� In the appearing link functions, leave “logit” checked 
� Click “Done” 

• Click on the red nij in the distribution statement for DrinkDriving 
� Select “denom” in the variable drop down list 

 
A binomial distribution is characterised by the proportion πji and the 
denominator nij stating the number of instances on which the proportion is 
based. In the present study the denominator is a constant 1, meaning that the 
data are binary. This and the choice of the “logit” function as a link function 
make the model a logistic regression model. 
 
Build a two-level random intercept model 

• Click “Add Term” and select “Cons” from the variable drop down list 

• Click on “cons” and check “j(id_loc)” 
 
In the General Linear Model notation, the intercept is not automatically included. 
To do so, a constant variable must be included as a predictor.  
 
Add predictors 

• Click on “Add Term”, select “TrafficCount” as a predictor from the variable 
drop down list 

• Click on “Add Term”, select “Intensity” as a predictor 

• Click on “Add Term”, select “Gender” as a predictor, chose “Male” as 
reference category 
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• Click on “Add Term”, select “Previously” as a predictor, select “not tested 
previously” as reference category 

• Click on “Add Term”, select “Probability” as a predictor; select “very low” as 
reference category 

• Click on “Add Term”, select “Previously” as a predictor, select “Age16-25” as 
reference category 

 
 

Estimation 

In the binomial distribution it is assumed that the variance is equal to the odds-
ratio, πji (1- πji). To test this assumption, first estimate a model assuming an 
extra-Binomial distribution, where the variance is left free to vary. 

• Click on “Notation” at the bottom of the “Equations” window again 

• Select “extra Binomial” in the top row 

• Leave the other two options at their default value (1st order linearization and 
MQL as estimation type) 

• Click “Done” 

• Press “Start” to start the estimation procedure. 
Once the estimation procedure has converged (i.e. all blue numbers turned 
green) 

• Click on “Notation” at the bottom of the “Equations” window again 

• Select “2nd order” under “Linearization” 

• Select “PQL” under “Estimation type” 

• Press “Done” 

• Press “More” to continue the estimation 
 
In the estimation procedure, the nonlinear link function is linearized by 
approximating it with a Taylor Series expansion. A Taylor series consists of an 
infinite number of terms and the more of them are used, the closer the 
approximation. The first choice is whether only the first (1st order linearization) 
or the first two are used (2nd order linearization). The other choice concerns the 
values that the Taylor series expansion is based on: During each iteration the 
Taylor series is calculated on the basis of the currently estimated parameter 
values. In the Marginal Quasi Likelihood method (MQL) only the fixed 
parameters are included, in the Penalized Quasi Liklihood method (PQL) the 
residuals are included as well. Generally speaking, 2nd order linearization and 
PQL are more accurate but computationally intensive and more prone to 
convergence problems.  The 1st order MQL estimates on the other hand are 
known to be biased downwards. It is therefore suggested to use 1st order 
linearization and MQL to get rough starting values on which the final estimation 
using 2nd order linearization and PQL is based. For more information see 
Goldstein (2003) or Hox (2002). With these methods, slight variations in the 
estimated values are to be expected. 
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Results 

 
 
The first interest is to evaluate whether the assumption of a binomial distribution 
holds. In that case the theoretically expected value for the variance would be 1. 
At the bottom of the Equations window, the estimated variance is indicated with 
0.711. As this is very close to the theoretically expected value, it is probably 
safe to estimate the model under the more restrictive assumption of a Binomial 
distribution (rather than an extra-Binomial one). 
 
Estimate the model again assuming a Binomial distribution. 

• Click on “Notation” at the bottom of the “Equations” window again 

• Click on “Use Defaults” (i.e., Binomial distribution, 1st order linearization and 
MQL as estimation type) 

• Click “Done” 

• Press “Start” to start the estimation procedure. 
Once the estimation procedure has converged (i.e. all blue numbers turned 
green) 

• Click on “Notation” at the bottom of the “Equations” window again 

• Select “2nd order” under “Linearization” 

• Select “PQL” under estimation type 

• Press “Done” 

• Press “More” to continue the estimation 
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Results and interpretation 

 
 
The parameter estimates of the Binomial model are very similar to that of the 
extra-Binomial one, confirming that the Binomial distribution assumptions hold 
for the present analysis. The interpretation will therefore be based on this last 
model. 
 
Before interpreting the coefficients, their significance has to be tested. For 
categorical variables with several levels (e.g. probability) there is more than one 
predictor (here 4: low, medium, high, and very high) which have to be tested 
jointly. This is done with the Multivariate Wald test. Single coefficients for 
continuous predictor variables (e.g. TrafficCount) or those with only two levels 
(e.g. Gender) can be tested with the Z-test. 
  
To conduct the Z-test: 

• Divide the coefficients by their standard errors 

• Click on “Basic Statistics” in the top menu bar and select “Tail Areas” 

• Check “Standard Normal distribution” 

• Fill in the result of the division 

• Click “Calc” 
 
To conduct a Multivariate Wald test (joint Chi-square test) 

• Click on “Model” in the top menu bar and select “Intervals and tests” 

• Check “fixed” at the bottom of the appearing dialogue window 

• Type a 1 in front of every coefficient that you want to test jointly (e.g. those 
for “low probability”, “medium probability”, “high probability”, and “very high 
probability”) 

• Click on “Calc” 

• Click on “Basic Statistics” in the top menu bar and select “Tail Areas” 

• Check “Chi Squared” 

• Fill in the resulting Chi-square value from the “Intervals and tests” dialogue 

• Click “Calc” 
 
As can be seen in Table 2.3.1, all predictor variables are significant. 
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Predictor Coefficient SE  Z p(Z)  Chi2 d.f. p(chi2)  e
coefficient

 

TrafficCount -0.002 0.0001  -20.00 0.000      0.998 
Intensity 0.898 0.379  2.37 0.009      2.455 
Female -1.374 0.206  -6.67 0.000      0.253 
Previously 0.407 0.14  2.91 0.002      1.502 
Prob. Low 0.536 0.166     25.46 4 0.000  1.709 
Prob. Medium 0.743 0.168          2.102 
Prob. High 0.313 0.277          1.368 
Prob. Very high 1.431 0.289          4.183 
Age26-39 0.709 0.241     18.17 3 0.000  2.032 
Age40-54 1.312 0.233          3.714 
Age55+ 0.859 0.271          2.361 

Table 2.3.1:  Results of single and joint tests for predictors 

 
One way to interpret the coefficients is to take their exponentials, which is 
presented in the right-most column of Table 2.3.1. For a one unit increase in the 
predictor, the odds of the dependent variable have to be multiplied by the 
exponential of the coefficient. 
 
The odds of an event are calculated as the number of events divided by the 
number of non-events. For example, on average 3 drivers in every 100 are 
drunk, so the odds for any randomly chosen car of having a drunk driver are: 
3/97 = 0.031. The odds for an event that is as likely to happen as not (p=0.5) 
are 1. While odds have useful mathematical properties, they can produce 
counterintuitive results because they are similar to probabilities in the lower 
ranges (the odds of p=.01 are .0101) but not at all in the higher ranges (the 
odds of p=.75 are 3 and those of p=.99 are 99). As an example: an 80% 
probability is four times the chance of a 20% probability but the odds are 16 
times higher.  
 
Another way to interpret the coefficients, is to calculate the probability for 
different values of the predictor. The probability for any chosen value of a 
predictor x is given by: 

 
))(exp(1

1

10 i

i
xββ

π
+−+

=  (2.3.1) 

 
In Table 2.3.2, the probability for DrinkDriving is given for each predictor taking 
the value of 1, while all other predictors are 0. In the third column, this 
probability is divided by the probability at the intercept (i.e. for all predictors 
being zero), indicating the multiplicative factor on the probability for a one-unit 
increase. This factor is compared to the exponential of the coefficient, the 
multiplicative factor on the odds. As can be seen, the two right-most columns 
are exactly the same, indicating that with such a small proportion of drink 
driving, the difference between probabilities and odds are negligible. 
 
The interpretation of each coefficient is described elaborately in section 2.3.2 of 
the methodology report (D7.4) and will not be fully repeated here. As an 
example we  
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Predictor Coefficient πji\x=1 (πji\x=0) / (πji\x=1) e

coefficient
 

Intercept -4.746 0.009   
TrafficCount -0.002 0.009 0.998 0.998 
Intensity 0.9 0.021 2.460 2.460 
Female -1.374 0.002 0.253 0.253 
Previously 0.407 0.013 1.502 1.502 
Prob. Low 0.536 0.015 1.709 1.709 
Prob. Medium 0.743 0.018 2.102 2.102 
Prob. High 0.313 0.012 1.368 1.368 
Prob. Very high 1.431 0.036 4.183 4.183 
Age26-39 0.709 0.018 2.032 2.032 
Age40-54 1.312 0.032 3.714 3.714 
Age55+ 0.859 0.021 2.361 2.361 

Table 2.3.2: Probability of DrinkDriving for each predictor at x=0 and x=1. 
 
 
will describe the interpretation of one continuous variable (TrafficCount) and of 
a categorical one (Age).  
 
TrafficCount has a negative weight, indicating that for each car passing, the 
proportion of drink driving decreases. The exponential of the coefficient (.998) 
indicates that for the decrease in one car the odds have to be multiplied by 
.998, i.e. decrease by 0.2%. Note that the relation between predictor and 
dependent variable is not linear. To establish the decrease in odds for 100 cars 
passing, one has to multiply the coefficient by 100 before taking the exponential 
which results in 0.819 or an 18% decrease. 
 
The coefficients for the age categories 26-39, 40-54, and 55+ are all positive 
and thus result in exponential coefficients larger than 1. This means all age 
groups show a higher incidence of drink driving that the youngest drivers (16-
25) who constitute the reference category. Most notably, in the age-group of 40-
54 year olds the exponential coefficient amounts to 3.714, which indicates that 
drink driving in this age group occurs almost four times as often as among the 
young drivers. 
 
The joint chi-square test reported above indicates that there is a difference 
between the age-groups somewhere. One might also want to test, whether two 
particular age groups differ from each other significantly. To test whether the 
40-54 year olds differ from the 55+ year olds, follow the same procedure as 
described above, but put 1 in front of “age 40-54” and -1 in front of “age 55+”. 
The difference between those two age groups is significant (X2(1)=5.58, 
p=.018). We can therefore conclude that the 40-54 year olds drink and drive 
significantly more often than even the group of people older than 55+ who 
feature the second highest rate of drink driving.  
 

2.3.2.1. Conclusion 

A multilevel version of a logistic regression analysis was presented. Special 
characteristics of the estimation procedure for binary variables were discussed. 
The binomial model was compared to the extra-binomial model and it was 
concluded that the binomial distribution holds. It was demonstrated how to use 
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the joint Wald test to test the significance of categorical variables and shown 
how the coefficients can be interpreted either by transforming them into odds 
ratios or calculating the probability for specific values of the predictors.  
 
 



2.3.3 Multinomial responses 

Heike Martensen and Emmanuelle Dupont (IBSR) 

 
The example data used in this section are the Belgian drink driving roadside 
survey data also used in section 2.3.2. The data contain the same variables as 
in 2.3.2, with the exception of the dependent variable. Rather than DrinkDriving 
(a dichotomous variable) in this chapter a variable with three possible 
outcomes, “Breathtest” will be modelled: 
 
Breathtest 1 = Safe; blood-alcohol concentration (BAC) is below 0.05 mg/l. 

2 = Alarm; driver’s BAC is between 0.05 and 0.08 mg/l. 3 = 
Positive; driver’s BAC is above 0.08 mg/l. 

ID_ind Identification number of each driver tested. 
ID_loc Identification number of each test location. 
Gender Gender of the driver: Male =1, Female =2. 
Age A categorical variable: 16-25=1, 26-39=2, 40-54=3, 55+=4. 
 
Categorical responses can be perceived in two ways: They can either form an 
ordered series that is based on some underlying continuous variable or they 
consist of different categories that are not systematically related. In the present 
case, the three categories (“safe”, “alarm”, “positive”) are clearly related to the 
underlying variable blood alcohol concentration (BAC) and will therefore be 
modelled in an ordered proportional odds model. At the end of this section, the 
unordered category model will be presented, so that the reader can see how 
such a model is fitted and how the results differ from an ordered model. 
 

Data load 

Click on “File” in the top menu bar and select “Open worksheet”. 
Open “ALCOHOL.ws” 
 
A constant (“cons”) is necessary for building a model for categorical data. To 
generate this variable (unless you have done it and saved it in section 2.3.2), 

• Click on “Data Manipulation” and select “Generate Vector” 

• Select “Constant Vector” as type of vector 

• Select an empty output column (e.g. c30) 

• Fill in the number of cases (11,186) at “Number of Copies”  

• Fill in “1” at “Value” 

• Click “Generate” 

• Close the “Generate Vector” dialogue window 

• Click on “Data Manipulation” and select “Names” 

• Select the first variable just generated (i.e. c30) 

• Type “cons” in the field at the top of the window and press return 
 

2.3.3.1. Ordered proportional odds: empty single level model 
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Model formulation 

Define the dependent variable  

• Click on the “y” and  
� Select “Breathtest” from the drop-down window as dependent 

variable 
� Select “2-ij”from the N-levels drop-down menu 
� Select “ID_loc” from the level 2(j) drop-down menu 
� Select “ID_ind” from the level 1(i) drop-down menu 
� Click “Done” 

• Click on the N in the Distribution statement for Breathtest and 
� Check “Multinomial” 
� In the appearing window, leave “logit” checked 
� Select “Ordered proportional odds” 
� Leave “safe” as reference category  
� Click “Done” 

 
 
 
 

• Click on the red nij in the distribution statement for Breathtest 
� Select “cons” in the variable drop down list 

 
When a response variable is defined as multinomial, MLwiN automatically 
generates a number of new variables. To view these variables select “Data 
Manipulation” in the top menu bar, click  “view or edit data”, click on “view” and 
select “resp”, “resp_indicator”, and “id_ind_long”. Click “Ok”.  
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A new response variable has been made (resp), which indicates for each 
individual for each response category, whether this category was the given 
response (1) or not (0). In the present case we have three categories. Note 
however, that the data can be fully described with two independent categories. 
If someone was neither in the category “alarm” nor in “positive”, we know for 
sure that he is in “safe”. Therefore the variable “resp” contains for each 
individual two values indicating whether or not the response has been “alarm” or 
“positive”, respectively.  
 
The variable “resp_indicator” indicates which response the value in the variable 
“resp” applies to. There are two possible values: (>=alarm) or (>=positive). 
These labels including the “greater-than or equal” relation are automatically 
generated by MLwiN. They are due to the fact that the estimated model is an 
ordered category model in which it is assumed that “positive” is greater than 
“alarm” and “alarm” is greater than “safe”. Therefore, an individual categorized 
as (>=positive) is automatically also categorized as (>=alarm). The reader can 
verify this by checking the values in “resp”. The majority of the individuals have 
two zeros, indicating that they were in the safe-category. There are some 
individuals having a 1 at (>=alarm) and a zero at (>=positive), who were in the 
alarm category. Note however, that all individuals with a 1 at (>=positive) also 
have a 1 at (>=alarm). It is easy to understand this when re-translating the 
category titles to the underlying BAC values: Everybody who is in the positive 
category (i.e. his BAC was >=0.08) also has a BAC >=0.05 (which defines the 
alarm category). 
 
A multinomial model has an intercept for each independent category (i.e. one 
for (>=alarm) and one for (>=positive). To include these intercepts into the 
model 

• Click “Add Term” and select “Cons” from the variable drop down list 

• Click “add Separate coefficients” 
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• Click “Done” 
 

Estimation 

• Click on “Nonlinear” at the bottom of the Equations window 

• Select “Use defaults” or check  “Multinomial”, “1st order”-Linearisation, and 
“MQL” 

• Click “Done” 
 
A couple of remarks about the estimation procedure are necessary. At the time 
of writing this manual, the estimation of multinomial models proved to be 
problematic. As described in the previous section on binomial data (2.3.2), it is 
principally advised to use 2nd order PQL estimates for good unbiased results. 
However, for the multinomial model these estimates did not converge, leaving 
us with 1st order MQL estimates, which are more stable but downwardly biased. 
It was decided to include this chapter nevertheless, because due to the rapid 
development in estimation techniques (see also section 2.7 in the Methodology 
report) these problems might be solved soon. Because the estimation is 
problematic at the moment, MLwiN gives a lot of numerical warnings while 
running. As advised in the MLwiN manual (Rasbash et al., 2004), we suggest to 
suppress them by clicking “Estimation control” and checking “suppress numeric 
warnings”. 
 

 
 

• Then press “Start” the estimate the model 
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Results and interpretation 

 
 
The only thing this empty model does is to estimate an intercept for each of the 
categories. As indicated in the methodology report, these intercepts can be 
translated into probabilities by filling them into equation 2.3.4 of the 
methodology report. 

)p(exp1

1

arameter
ij

−+
=γ  (2.3.4) 

 
This way we receive 0.02 as probability to be in category “positive” (i.e. BAC 
>=.08) and 0.03 to be in category “alarm” or “positive” (i.e. BAC >=.05). Note 
that no variance is estimated, as in the multinomial distribution the variance is 
determined exclusively by the probability of belonging to a particular category 
(see section 2.3.3 in the methodology report). 
 
Each component of the model equations is double indexed by ij, indicating that 
we have a two-level structure. This might be confusing, because conceptually, 
this model has only one level (the individuals). Structurally, the individuals are 
the second level and therefore indexed j here. The first level, indexed by i, is 
defined by the variable “resp_indicator” that indicates which of two categories 
((>=alarm) or (>=positive)) the response variable refers to. 
 

2.3.3.2. Ordered proportional odds: empty two-level model 

In the previous section on binary responses (2.3.2), it had been demonstrated 
that the probability of drink driving varied across measurement locations. A 
model that includes a location-level is conceptually a two-level model. To 
implement a two-level multinomial model, however, we will build a structural 
three-level model (the first level being reserved for the response indicator). 
 

Model formulation 

Because the three response categories are assumed to have one underlying 
variable (in this case the BAC) it is assumed that random variation across the 
locations is the same for each response category. To create this structure, it is 
necessary to include another constant into the model with a common coefficient 
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(as opposed to the constant that is already included that has separate 
coefficients for (>=alarm) and (>=positive)). 
 

• Click on “Add Term” at the bottom of the Equations window 

• Select “cons” from the variable drop down list 

• Click on “Add common coefficient” 

• Select “Include all” 

• Click “Done” 

 
 
This common coefficient must be allowed to vary randomly across locations. 
However, because we already have intercepts we do not want the newly 
included constant to function as a fixed factor. Therefore 

• Click on the constant just added (cons.23) 

• Check “k(id_loc_long)” 

• Uncheck “Fixed Parameter” 

• Click “Done” 

 
 
Press “Start to estimate the model. 
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Results 

 
 
As can be seen in the triple index ijk, structurally this is a three level model. 
Conceptually however, this is a two-level model. The second conceptual level is 
that of the locations. It is implemented by the joint intercept hjk . This joint 
intercept has been defined as random factor only, but not as fixed factor. 
Consequently there is no mean estimated for it, only its variance Ωv , which 
indicates how the probability to be either in category “alarm” or in category 
“positive” varies across locations. Although the present estimations should be 
interpreted with caution, we can note that the variation Ωv is quite large 
compared to its standard error, making it very likely that there is substantial 
variation across locations in the probability to have a BAC above .05 or above 
.08. This is also in line with the results from the binary model in section 2.3.2. 
 
 

2.3.3.3. Ordered proportional odds: the two-level model with predictors 

 
The next step is to include predictors into the multinomial model. In the ordered 
model, predictors are usually assumed to apply to all categories in the same 
way (i.e., if a particular variables is thought to affect the probability to have a 
BAC above .05 it is also thought to affect the probability to have a BAC above 
.08). Therefore only one slope is estimated for each predictor. We will take up 
the variables “gender” and “age”. 
 

Model formulation 

 

• Click on “Add Term” at the bottom of the Equations window 

• Select “gender” from the variable drop down list 

• Select “male” as reference category 
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• Click on “Add common coefficient” 

• Select “Include all” 

• Click “Done” 

 
 
 

Results and interpretation 

 
 
The common part hjk is now defined by the random variation over the locations 
(v3kcons.23) but also by the effect of gender. The coefficient for female.23jk is 
negative, indicating that women, as compared to men who form the base line 
category, have a lower probability to be in categories “alarm” or “positive”. 
Accordingly the intercepts cons.(>=alarm)ijk and  cons.(>=positive)ijk have 
increased (i.e., they have lower negative values) as compared to the model 
without predictors. These intercepts now represent the probabilities for men 
instead of representing the probabilities for the whole group. 
 
Now include the predictor “age”. This is a categorical variable representing four 
age-categories (16-25, 26-39, 40-54, 55+). 
 

• Click on “Add Term” at the bottom of the Equations window 
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• Select “age” from the variable drop down list 

• Select “age 16-25” as reference category 

• Click on “Add common coefficient” 

• Select “Include all” 

• Click “Done” 

• Click “Start” to estimate the model 
 

Results and interpretation 

 
 
The coefficients for the various age-categories are positive, indicating that all 
age-categories listed have a higher probability of being in “alarm” or “positive” 
than the youngest (16-25) that forms the reference category. The highest 
coefficient is estimated for drivers aged 40-54, indicating that this group is 
especially at risk of drink driving.  
 

2.3.3.4. Unordered categories: the two-level model with predictors 

In the present example we clearly have a variable (the BAC) underlying the 
response categories, making the ordered proportional odds model likely to be 
the appropriate. In this way, it was assumed that both probabilities (of having a 
BAC >.05 and of having a BAC >.08) vary in the same way across locations and 
that the effects of gender and age on both probabilities are the same. However, 
even if both probabilities are related to one underlying variable, they might 
nevertheless show different random or fixed effects. This can be investigated in 
an unordered category model, which assumes no relation between the different 
categories to start with. To switch from an ordered to an unordered multinomial 
model in MLwiN, one has to build a new model from the start. 
 

• Click on “Clear” at the bottom of the Equations window 

• Click on the “y” and  
� Select “Breathtest” from the drop-down menu as dependent 

variable 
� Select “2-ij”from the N-levels drop-down menu 
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� Select “ID_loc” from the level 2(j) drop-down menu 
� Select “ID_ind” from the level 1(i) drop-down menu 
� Click “Done” 

• Click on the N in the Distribution statement for Breathtest and 
� Check “Multinomial” 
� In the appearing window, leave “logit” checked 
� Select “Unorderd” 
� Leave “safe” as reference category  
� Click “Done” 

• Click “Add Term” and select “Cons” from the variable drop down list 

• Click “add Separate coefficients” 

• Click “Done” 
 
To include the location-level into the model, one has to let the intercept vary 
randomly across locations. In the ordered model, this was done for a joint 
intercept. In the unordered model, we simply let the intercepts that already 
define the categories vary across locations. 
 

• Click on “cons.alarmij” 

• Check “k(id_loc_long) 

• Click “Done” 

• Do the same with “cons.positiveij” 
 
In the unordered model, predictors are not assumed to have the same effect on 
all categories. Therefore separate coefficients have to be estimated for each 
category. 
 

• Click on “Add Term” at the bottom of the Equations window 

• Select “gender” from the variable drop down list 

• Select “male” as reference category 

• Click on “Add separate coefficients” 

• Click “Done” 

• Repeat the procedure to include predictor “age” 
o Select “age16-25” as reference category 

• Click “Start” to estimate the model 
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Results and interpretation 

 
 
In the unordered category model for three categories, two contrasts function as 
dependent variables: The contrast between “safe” (the reference category) and 
“alarm”, and the contrast between “safe” and “positive”. The values that are 
predicted by the model are the log-odds of these contrasts (“alarm-
safe”:log(π2jk/ π1jk) and “positive-safe”: log(π3jk/ π1jk)). For each of these log 
odds, there is a full prediction model including fixed factors (age and gender) 
and a random factor (the location effects v0k and v1k). The variation across 
locations is given by Ωv which is now a matrix containing the variation of the 
contrast “alarm-safe” across locations (upper left), the variation of the contrast 
“positive-safe” across locations (lower right), and the covariance (lower left 
corner). We can see that there is substantial covariance, indicating that for 
locations with a large contrast “alarm-safe”, the contrast “positive-safe” is also 
large. The assumption that the probabilities to be in “alarm” and to be in 
“positive” vary across locations in the same way, lay at the basis of assuming a 
common random factor in the ordered model. The large covariance in the 
present model supports this assumption. 
 
The coefficients for gender and age show the same pattern for both contrasts: 
The negative coefficients for “female” indicate that men have a higher 
probability to be in “alarm” or “positive” respectively as compared to “safe”. The 
positive coefficients for the age categories listed indicate that drivers in those 
age categories have higher probabilities to be in “alarm” or “positive” than the 
youngest drivers. And for both contrasts it is the category of 40-54 year olds 
that received the highest coefficient.  
 
Although both sets of coefficients show exactly the same pattern, one might 
note that the coefficients for the contrast “positive-safe” all have somewhat 
higher values than those for the contrast “alarm-safe”. This would indicate that 
being a man between 40 and 54 years is even a better predictor for being in 
category “positive” (i.e. having a BAC of .08 or higher) than for being in category 
“alarm” (i.e., .05<BAC<.08). It is interesting to test whether this difference is 
significant. To do so for the two coefficients for “female”: 
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• Click on “Model” in the top-menu bar 

• Select “Intervals and tests” 

• Check the radio-button in front of “fixed” 

• Type “1” behind “female.alarm” 

• Type “-1” behind “female.positive”  

• Click on “Calc” 
 
The resulting Chi-square value of 2.792 with 2 degrees of freedom corresponds 
to a probability of .095. We can conclude that the effect of being a woman does 
not differ significantly between the contrasts “alarm-safe” and “positive-safe”. As 
for the other coefficients the differences between both contrasts are smaller 
than the one for the gender-coefficients, we can conclude that there is no 
systematic difference between the effects of age and gender on the categories 
“alarm” and “positive” respectively. Again, the results of the unordered model 
support the assumptions at the basis of the ordered proportional odds model. 
 

2.3.3.5. Conclusion 

It has been shown how categorical responses can be analysed in a multilevel 
multinomial model. Two different versions were presented. (1) The ordered 
proportional odds model is based on the assumptions that the response 
categories result from an underlying continuous variable and that fixed and 
random effects therefore have the same shape for outcome. (2) The unordered 
categories model does not assume any systematic relation between the 
different outcomes. Independent models are estimated for each outcome (in 
contrast to the reference category). It was shown that even for categorical data 
that are expected to have a common underlying variable it can be interesting to 
analyse them in an unordered categorical model, as comparing the independent 
prediction models for each category can indicate whether an ordered 
proportional odds model is appropriate.  
 
 



2.3.4 Counts 

George Yannis, Eleonora Papadimitriou and Constantinos Antoniou (NTUA) 

 
In this section, an example for fitting Poisson multilevel models is presented 
using the MLwinN 2.01 software. The example concerns an investigation of the 
regional effect of speeding and drinking-and-driving enforcement on the number 
of road accidents in Greece. The theoretical background, models fit and results 
were discussed in section 2.3.4 of the Methodology Report. 
 
The dataset includes accidents data, police enforcement data as well as other 
demographic data for the 49 counties and 12 regions of Greece for the period 
1998-2002. More specifically, the variables and values used are summarized in 
the following Table: 
 
Region 1-12 regions of Greece 

County 1-49 counties of Greece 

Accs The number of accidents of each county 

alcohol The number of alcohol controls of each county (1000 alcohol controls) 

Speed The number of speed infringements of each county (1000 speed infringements) 

logepop  The natural logarithm of the population of each county 

Natroad The proportion of National Roads of the road network of each county 

Vehown The vehicle ownership of each county (vehicles per 1000 inhabitants) 

Cons The constant term (1) 

 
 
Open the dataset PoissonManualData3.ws using the Open Worksheet option 
from the Files menu. Opening the Names window from the Data Manipulation 
menu gives the following: 
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The response variable (accs) in this dataset is the number (counts) of road 
accidents in various counties of Greece during the period 1998 to 2002. The 
data were collected in 49 counties1; these counties are included into 12 regions, 
giving two levels of data. As explained in the Methodology Report (section 
2.3.4), count data are constrained to be non-negative, therefore we would prefer 
to model the logarithms of the counts. We will therefore fit a Poisson model to 
the count data using a log link function, which can be specified through the 
software.  
 
In order to work with the accident rates rather than the accident counts, we use 
an additional parameter known as an offset. The variable logepop reflects the 
expected number of accidents in each county, which is considered to be 
proportional to the population of each county, and will be used to create an 
offset variable. It should be noted that, as a log link function is used for the 
response variable, the offset term should also be transformed accordingly. In 
this dataset no transformation is required, as the variable logepop already 
corresponds to the natural logarithm of the population of each county. However, 
the transformation could be carried out using the Command Interface option 
from the Data Manipulation menu.  
 
The variables alcohol, speed, natroad and vehown also concern each county 
and shall be used as explanatory variables. These variables have been 
centered around their mean, as recommended by the MLwiN users manual, in 
order to avoid computational instabilities. 
 
We will start by fitting a simple (single level) model and then proceed to 
multilevel structure. 
 
 

2.3.4.1. A single-level Poisson model 

 
In order to specify a simple (single level) model in MLwiN: 
 
▪  Open the Equations window from the Model menu and click on y 
▪  In the Y variable window, select accs from the y: drop down list, select i-1 

from the N levels: drop down list and county from the level 1(i) drop down list, 
and click Done. 

 

                                            
1  The Athens and Thessalonica metropolitan areas, where a 

disproportionally high number of accidents and police controls are observed, 
were not included in the dataset. 
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▪  Click on the N (ΩΧ, Β) that appears on the first line of the Equations window, 

select Poisson from the available distributions and click Done. 
 

 
 
 
▪  Click on the (πi) that appears on the second line of the Equations window, 

select logepop as offset term and click Done. 
 

 
 
 
▪  Click on the Add Term button of the Equations window and add cons, alcohol 

and speed to the model. By clicking on each of the terms in the Equations 
window, we can see that these are entered by default as fixed parameters. 

 

 
 
 
▪  Click on the Estimates button of the Equations window and the parameters to 

be estimated will be highlighted in blue. The Equations window will now look 
as follows: 
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It should be noted that, the last line in the Equations window reflects the 
Poisson assumption that the variance of the response variable is equal to the 
mean πi. 
 
▪  In order to set the estimation procedure, click on the Nonlinear button of the 

Equations window select distributional assumptions Poisson, linearization 1st 
order and estimation type MQL (Marginal Quasi Likelihood) and click Done. 

 

 
 
 
▪  In order to run the model, click Start on the toolbar of the main window. We 

then obtain the following results: 
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These results are intuitive (i.e. an increase in speeding and drinking-and-driving 
controls results in a reduction of road accidents). In the next section, we will see 
how this effect may vary when adding more structure to the data. 
 
 

2.3.4.2. A two-level Poisson model 

 
We will now fit a two-level model, in order to investigate the regional variation of 
the effect of enforcement on the number of road accidents. We shall start with 
the random intercept model: 
 
▪  Remove the terms alcohol and speed from the model. 
▪  Click on accs in the Equations window, select j-2 from the N levels: drop 

down list and region from the level 2(j) drop down list, and click Done. 
 

 
 
▪  Click on the variable cons in the Equations window and set cons to be 

random at the j(region) level. 
 

 
 
As there are only 12 regions at the higher level, it is recommended to use the 
RIGLS estimation method, which provides less biased estimates of the variance 
than the IGLS when there is limited number of higher level units. 
 
▪  Select RIGLS from the Estimation menu of the main window 
▪  Click the Start button on the toolbar of the main window to run the model. 

The results are as follows: 
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In order to graphically represent the average intercept and the random 
intercepts: 
 
▪ Open the Predictions window from the Model menu. The elements of the 

model are arranged in two columns. These columns are initially grayed out. 
We will build a prediction equation in the top of the window, by selecting the 
elements we want from the bottom section. 

▪ Click on β0 in order to select only the fixed part of the model. 
▪ Select c100 from the Output from prediction drop down list 
▪ Click the Calc button 
 

 
 
 
▪ Open the Customized Graphs window from the Graphs menu 
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▪ In the plot what? tab, select c100 from the y drop down list, alcohol in the x 
drop down list and line in the plot type drop down list.  

 

 
 
▪ Click the Apply button to obtain a graph of the average (fixed) intercept 
 

 
 
 
Accordingly, in order to graphically represent the average intercept and the 
random intercepts: 
 
▪ Open the Predictions window from the Model menu.  
▪ Click on β0 and u0j in order to select both the fixed and the random part of the 

model. 
▪ Select c101 from the Output from prediction drop down list 
▪ Click the Calc button 
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▪ Open the Customized Graphs window from the Graphs menu 
▪ In the plot what? tab, select c101 from the y drop down list, alcohol in the x 

drop down list, line in the plot type drop down list and region in the group 
drop down list.  

▪ In the plot style tab, select 16 rotate from the color drop down list. 
▪ In the other tab, select group code. 
  
 

 
 
 
▪ Click the Apply button to obtain a graph of the random intercepts 
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We will now add a random slope to the model: 
 
▪  Click on the Add Term button of the Equations window and add alcohol to 

the model. 
▪  Click on the variable alcohol in the Equations window and set alcohol to be 

random at the j(region) level. 
▪  Click on the Start button to run the model 
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The results reveal a significant variance in the effect of alcohol controls on the 
number of accidents.  
 
However, it has been proved that the 1st order MQL estimation method tends to 
overestimate some of the variance in Poisson multilevel models. We will 
therefore switch to the 2nd order PQL (Penalized "Predictive" Quasi Likelihood), 
which is more accurate. 
 
▪  Click on the Nonlinear button of the Equations and select linearization 2nd 

order and estimation type PQL and click Done. 
 
 

 
 
 
▪  Click on the More on the toolbar of the main window button to run the 

model. 
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All fixed and random effects are statistically significant.  
 
In order to graphically represent the random slopes, we follow the process 
described above for the random intercepts. In this case, we should select β0, β1, 
u0j and u1j in the Predictions window of the Model menu and output from 
prediction to another column. We then obtain the following: 
 
 

 
 
 
In order to explore the residuals of the model, starting by the level-1 residuals: 
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▪ Open the Residuals window from the Model menu 
▪ In the Settings tab, write 300 (or any other appropriate column number) in the 

start output box and click on Set columns. The boxes beneath this button are 
then filled in gray with the column numbers that will be used for residuals 
calculations. Additionally, select 1-county fro the level: drop down list. 

▪ Click on the Calc button in the Residuals window. 
 
 
 

 
 
 
▪ In the Plots tab, select the first option standardized residual * normal scores  
▪ Click on the Apply button. 
▪ Then in the Plots tab, select the fourth option standardized residual * fixed 

part prediction 
▪ Click on the Apply button. 
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We can see that the level-1 residuals present no significant deviation from the 
Normal distribution. Moreover, the residuals are independent from the predicted 
values. 
 
In order to explore the level-2 residuals, we will repeat the process described 
above, except that we will set start output at a different column number and 
select 2-region in the level: drop down list, in the Settings tab of the Residuals 
window. 
 
 

 
 
We will then obtain the following results:  
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These results are less satisfactory compared to the level-1 results, as a 
consequence of the limited number of higher level units. 
 
Accordingly, the effect of speed enforcement on the number of accidents can be 
separately examined, by removing the variable alcohol from the model and 
adding the variable speed, also allowing it to randomly vary between regions. 
The multilevel model fitted should be as follows: 
 

 
 
 
All fixed and random effects are statistically significant.  
 
In order to examine the combined effect of speeding and drinking-and-driving 
enforcement, we will add alcohol to the model, allowing it to vary among 
regions. We will obtain the following results: 
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In this case, all fixed effects are significant; however, the covariances related to 
the number of speed infringements are non significant. This is quite surprising, 
when considering that both effects were significant when examined separately. 
It is therefore indicated that there is some bias in the model. This is also 
identified when plotting the predicted values with alcohol and speed.  
 
In order to plot the effects of alcohol, follow the process described above, but 
select in the Predictions window only the β0j, β2j, u0j and u2j effects (i.e. cons and 
alcohol) and another column (e.g. c106) in the output from prediction drop down 
list. Accordingly, in order to plot the effects of speed, follow the same process, 
but select in the Predictions window only the β0j, β1j, u0j and u1j effects (i.e. cons 
and speed) and another column (e.g. c107) in the output from prediction drop 
down list. The two plots should be as follows: 
 

 
 
We can see that there are several regions for which the slopes are counter-
intuitive. We should examine whether the two variables are correlated. 
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▪ Open the Averages and correlations window from the Basic Statistics menu 
▪ Select Correlation in the Operation tab 
▪ Click on alcohol and speed in the variables list 
▪ Click Calculate 
 

 
 
 
The results will appear in the Output window as follows: 
 

 
 
 
We can see that there is a positive correlation of 0,729 between the variables 
speed and alcohol, indicating multicollinearity. This explains to some degree the 
confusing modelling results (see section 2.3.4 of the Methodology Report for 
more information on multicollinearity effects). 
 
 
A two-level extra-Poisson model (with overdispersion) 
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Another issue that needs to be examined in Poisson models is overdispersion 
(see section 2.3.4 of the Methodology Report). In order to fit a multilevel model 
with overdispersion, an extra-Poisson distribution is assumed: 
 
▪ Create a two-level model including only a constant term in the Equations 

window, as described previously 
▪  Click on the Nonlinear button of the Equations window and select 

distributional assumptions extra Poisson, linearization 2nd order and 
estimation type PQL and click Done. 

 
 

 
 
An additional term to be estimated (i.e. the dispersion parameter) will appear in 
the bottom line of the Equations window, allowing for the mean / variance 
relationship to be different than 1. Running the model should give the following 
results: 
 
 

 
 
 
The results indicate that there is overdispersion in the data, as the dispersion 
parameter estimated is highly significant.  
 
Adding alcohol to the model gives the following results.  
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In this case, the dispersion parameter is lower (but also significant), indicating 
that the explanatory variable has accounted for a part of the overdispersion.  
 
 

2.3.4.3. A two-level negative binomial model 

 
As explained in the Methodology Report (section 2.3.4), another option for 
dealing with overdispersion in count data is to assume a Negative Binomial 
distribution, which includes a more complex variance structure, allowing thus 
more flexibility. In order to fit a Negative Binomial model in the data: 
 
▪ Create a two-level model including only a constant term in the Equations 

window, as described previously 
▪  Click on the N (ΩΧ, Β) that appears on the first line of the Equations window, 

select Negative Binomial from the available distributions and click Done. 
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In the bottom line of the Equations window, the mean / variance relationship is 
displayed, in which the variance is a quadratic function of the mean. Running 
the model should give the following results: 
 

 
 
 
Adding alcohol to the model gives the following results.  
 

 
 

 
These results are very similar to the Extra-Poisson model, in terms of both fixed 
and random parameter estimates. It is therefore shown that both Extra-Poisson 



  2.3.4 Counts 

 

 

  
P r o j e c t  c o - f i n a n c e d  b y  t h e  E u r o p e a n  C omm i s s i o n ,  D i r e c t o r a t e - G e n e r a l  T r a n s p o r t  a n d  E n e r g y  

 

Page  7 1  

and Negative Binomial distributional assumptions can efficiently handle 
overdispersion in count data.   
 
 



2.4 Longitudinal data 

Heike Martensen & Emmanuelle Dupont (IBSR) 

 
The example data used in this section are a set of simulated data for 500 
beginning drivers for which a driving-skill score was simulated for 7 consecutive 
years. Moreover, for each occasion an experience value was generated. This 
value was always “0” at the first measurement occasion and corresponded to 
the cumulative number of km driven for all the others. The variable “initial age” 
indicates for each driver the age at which they acquired their licences. 
 

Data load 

Open the file DRIVING SKILL.xls. Like most repeated measures tables, the 
data are coded in a format that will be called “wide” here. This means that there 
is one row for each subject with all measurements in it. Below a section of the 
original wide table is shown. To the right, the table continues with exp3/skill3 to 
exp6/skill6, below there are more subjects than visible here. 

  
  
To analyse these data in MLwiN, they have to be imported (see section 2.2 for 
instructions to paste data from Excel into MLwiN) and then the wide table must 
be converted into a long table. This means that all measurements are noted in a 
long list below each other. Only one variable “experience” and one variable 
“skill” are present and the measurement occasion is indicated by a third 
variable. An example for a long table is given here: 
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To create a long table in MLwiN, click on “Data Manipulation” in the top menu 
and select “Split record” and fill the dialogue window in as shown below. 

 
 
Click on “Split” to conduct build the long table. Then click on “Data 
Manipulation” and select “Names”. Change the names of C18, C19, and C20 by 
selecting each of these numbers from the list, typing their new name into the top 
frame and pressing return. C18 is the collection of the experience scores. Call it 
“experience”. C19 is the collection of the skill scores and should be called “skill”. 
C20 contains an indication from which measurement occasion the data come. 
This variable, call it “occasion”, has a value from 1 to 7 (1 for skill0, 2 for skill1, 
… etc.).  
 
As described in the methodology report, rather than simply indicating the 
number of the measurements, the time elapsed should be coded. This means 
that values should run from 0 to 6 rather than from 1 to 7. In order to do so, click 
on “Data Manipulation” in the top menu bar and select “Calculate”. Fill the 
dialogue window as shown below:  
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Than open the “Names” window and rename the newly generated variable into 
“telaps” (short for “time elapsed”). 
The long table should contain 3500 cases and consist of the following variables: 
 
subID Identification number of the driver tested. 
initialAge Age at obtainment of drivers licences. 
iacen Initial age centred to its mean. 
experience Number of km driven (in 1000). 
skill Number between 0 and 15 indicating the driving skill. 
telaps Time elapsed: 0 for first test, 1 – 6 for tests at consecutive 

years. 
 

2.4.1.1. The empty two-level model 

In the case of repeated measurements, the simplest model is the empty two-
level model. The first level is that of the single driving skill scores. These skill 
scores are nested within subjects, as there are 7 skill scores from each person. 
The repeated measures structure is therefore defined at the second level.  
 

Model formulation 

Define the dependent variable:  

• Click on the “y” and  
� Select “skill” from the drop-down window as dependent 

variable 
� Select “1-i”from the N-levels drop-down window 
� Select “subID” from the level 1(j) drop-down window 
� Click “done” 

 
Then define the dependent variable (skill) as varying over two random factors, 
namely the individual measurements (telaps) and the subject they are taken 
from (subID) 
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• Click on the dependent variable and define subID as the second level as 
shown below. 

 
 
Then define a variance component model by allowing the intercept to vary 
randomly across locations.  

• Click on the intercept 

• Check the box j(subID) 

• Press “Done” 

• Press “Start” to estimate the parameters 
 

Results and Interpretation 

Your Equations window should now look like this. 

 
The within-subject variation is indicated by σ2

e  and the variation between 
subjects by σ2

u0. Note that the results suggest that the differences between 
repeated driving tests for each participant are larger than those across 
participants. The mean intercept, β0j, indicates that over all subjects and all 
times of testing the mean skill score is 6.543. 
 
 

Graphic inspection of the residuals: Level 1 

To inspect the residuals of the model, 

• Click on Model in the top menu bar 

• Select Residuals 
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• Click “Calc” to calculate the Level 1 residuals 

• Select “Plot” at the top of the “Residuals” window 

• Check radio-button in front of “standardised residual and normal score” 

• Click “Apply” 
 

 
 

Graphic inspection of the residuals: Level 2 

 

• Go back to the “Settings” part of the “Residuals” window 

• Select “2:subID” from the “level” dropdown list 

• Click “Calc” to calculate the Level 2 residuals 

• Select “Plot” at the top of the Residuals window 
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• Click “Apply” 

 
The residuals are satisfyingly close to a normal distribution (that would have 
been indicated by a straight line). 
 

2.4.1.2. A Two-level variance component model with on predictor 

In the empty model there was more variation within subjects (as indicated by σ2
e 

) than between subjects. To estimate the proportion of the within subjects 
variation that can be attributed to the time elapsed after acquisition of their 
drivers licence, “telaps” is used as a predictor. 
 

Model formulation 

• Click “Add  Term” at the bottom of the Equations window 

• Select “telaps” from the “Variable” drop-down window 

• Click “Done” 

• To estimate this model press “Start”. 
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Results and Interpretation 

 
Because “telaps” is coded to be zero at the time of acquirement of the driving 
licence, the mean intercept β0j indicates the average skill score at that moment. 
The coefficient for “telaps” indicates that on average the skill score increases by 
half a point each year that a driver has his/her licence. Note that the within 
subject variance σ2

e is reduced as compared to the null model, suggesting that 
the measurements for each participant changed over time. However, the 
between subject variance σ2

u0  as well, suggesting that participants varied in the 
effect that telaps had for tham. Finally, the decrease of the deviance 
(loglikelihood) confirms that the model with “telaps” fits better than the one 
without.    
 

2.4.1.3. Two-level random intercept model with two predictors 

The question “treated” in this simulated study is whether it is the number of 
years passing or rather the increase of experience that make older drivers less 
accident prone than younger ones. To investigate this, the driving experience 
(measured in 1000 km driven) is taken up into the model in parallel with the time 
elapsed (telaps). 
 

Model formulation 

• Click “Add  Term” at the bottom of the Equations window 

• Select “experience” from the “Variable” drop-down window 

• Click “Done” 

• To estimate this model press “Start”  
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Results and Interpretation 

 
The coefficient for the variable “experience” is highly significant as it exceeds its 
own standard error several times. The coefficient for “telaps” however, is not 
significant anymore. This might be confusing, especially when noting that 
overall the model has clearly increased in fit (to test the significance of the 
difference between the two deviances, 162.43,  use “basic statistics”, “tail 
areas”). The change in the predictor for “telaps” is due to the fact that the time 
elapsed since one has acquired his driver’s licence and the number of 
kilometres one has driven are two related measures. A significant coefficient 
indicates that a proportion of the variance can be attributed to the predictor 
exclusively. The fact that “telaps” is not significant anymore when taken up 
together with “experience” suggests, that all the variance that “telaps” explained 
can be explained by “experience” as well. Note however, that the reverse is not 
the case: “experience” is significant even if it is taken up jointly with “telaps”, 
indicating that there is a proportion of variance in the driving skills that can be 
uniquely attributed to “experience”. 
 

2.4.1.4. A Two-level random intercept model with predictor experience 
only 

Because the predictor “telaps” (i.e. the time elapsed since acquirement of the 
driving licence) is not significant anymore one “experience” is taken up into the 
equation, this term can be dropped and “experience” remains in the model 
equation. 
 

Model formulation 

• Click the term “telaps” in the model equation 

• Click on “delete Term” 

• To estimate this model press “Start”  
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Results and Interpretation 

 
Removing “telaps” from the model has increased the deviance by only 0.55. 
With 1 degree of freedom (one parameter that needs to be estimated less), this 
CHI-2 value has a probability of 0.76 which is not significant at all. Indeed, all 
the variance in the “skill” scores that can be explained by time elapsed (telaps), 
can be explained by “experience” as well.   
 

2.4.1.5. A Two-level random intercept random slope model 

The coefficient for “experience” indicates that generally driving skills improve 
with an increase of km driven. To test whether this increase is the same for all 
participants we will allow the slope of experience to vary randomly across the 
level-2 units, i.e. the participants. 
 

Model formulation 

• Click on the Length 

• Check the box j(IDlocation) 

• Estimate the parameters by clicking on “Start” 
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Results and Interpretation 

 
 
Both, the intercept β0j and the coefficient of “Experience”, β1j, are now varying 
across subjects with the means indicated in the second and third equation. 
 
The between subject variance has now become a variance-covariance matrix 
Ωu: The upper left number is σ2

u0, the variance of the intercepts across subjects. 
It indicates how much the average driving score varies between them. The 
lower right number is σ2

u1, the variance of the “experience”- coefficient across 
locations. It shows that the relation between “experience” and “skill” varies 
between participants. The lower left number is σu01, the covariance between the 
two, indicating that subjects with a higher intercept (i.e. the average “skill”) have 
steeper slopes (i.e. a stronger increase of skills with experience). 
 
The deviance decreased by 85 as opposed to the variance component model, 
indicating that there is indeed substantial variation in the size of the experience-
effect, which also is apparent in the fact that the variance of the slope, σ2

u1, is 
significant. 
 

Graphic inspection of the model predictions 

To plot the model predictions, they have to be saved as a new variable first. 
 

• Select “Model” in the top menu bar and click on “Predictions” 

• Click on all parameters in the lower half of the appearing dialogue window 
(so that they turn from grey to black) 

• Select an empty column (e.g. c20) for “output from prediction to” 

• Click on “Calc” 

• Now you can close the “Predictions” window 
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Now a variable that contains the predictions of the model is created, which can 
be plotted against the “experience”. Open the graph dialogue by clicking on 
“Graph” in the top menu bar and by selecting “Customized Graphs”. Fill in as 
shown below (all changes have to be made in the drop-down lists on the right-
hand side and appear automatically in the left-hand side table) 

 
• Press “Apply” to create the graph. (You can close the Dialogue Window 

then.) 
 
The resulting graph shows separate regression lines for each location. 

 
 
The graph shows a “the rich get richer”effect: Those drivers that start at a high 
level also improve more with additional driving experience. In the model output, 
this effect becomes apparent in the covariance between intercept and slope, 
σu01. 
 

2.4.1.6. Adding a level-two predictor 

The beginning level of driving skills and the effect of “experience” vary 
systematically across participants. It is therefore sensible to search for 
predictors at the second level (here the subject level) to explain these 
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variations. As an example we will include the variable “iacen”, the initial age (ia) 
centered to its mean (cen).  
 

Model formulation 

• Click “Add  Term” at the bottom of the Equations window 

• Select “iacen” from the “Variable” drop-down window 

• Click “Done” 

• To estimate this model press “Start” 
 

Results and Interpretation 

 
 
The coefficient of “iacen” is marginally significant (Z= 1.88; p=.060). Its positive 
value would indicate that drivers who acquired their driving licences at a higher 
age tend to have higher skill scores.  
 

2.4.1.7. Adding a cross-level interaction 

As the next step it will be tested whether the initial age (iacen) modifies the 
effect of “experience”. To do this, the interaction between these two varis 
included into the model.  
 

Model formulation 

• Click on “Add term” and  

• Include the interaction between “iacen” and “experience” 
� Select order 1 (this means it’s a first-order interaction) 
� Select “iacen” as first variable 
� Select “experience” as second 
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� Click “Done” 

• Estimate the model by pressing “Start” 
 
Results and Interpretation 

 
 
Taking up the interaction term leaves the already marginal coefficient of “iacen” 
non-significant. The interaction between initial age (iacen) and “experience” 
itself, however, is significant. Its positive coefficient indicates that drivers who 
acquired their licence at a later age improved more per 1000 km driven than 
those who acquired their licence at an earlier age. (Please remember that all 
these “conclusions” are based on simulated data and generated for this 
manual).  
 

2.4.1.8. Conclusion 

In this chapter it was demonstrated how to use a two-level model to analyse 
repeated measurements taken from a group of participants. It was shown that 
the first level indicates the variation between measurements taken from the 
same subject, while the second level contains variation between subjects. 
Accordingly, variables that vary within subject across measurements (e.g. time 
or growth variables) should be included at level one, while variables that 
characterise individuals should be taken up as level-two variables. In the case 
of a repeated measurements analysis, a cross-level interaction then indicates 
how person-characteristics can modify the effect of time- or growth variables. 



2.5 Multivariate models 

George Yannis, Eleonora Papadimitriou and Costas Antoniou (NTUA) 

 
In this section, an example for fitting multivariate multilevel models is presented 
using the MLwinN 2.01 software. The example concerns an investigation of the 
regional effect of drinking-and-driving enforcement on the number of road 
accidents and related persons killed in Greece. The theoretical background, 
models fit and results were discussed in section 2.5 of the Methodology report. 
 
It is noted that in section 2.5 of the Methodology Report two model formulations 
were defined and presented: a normal bivariate multilevel model and a hybrid 
normal-poisson bivariate multilevel model. However, only the latter is 
demonstrated in this section, as this formulation was proved to be more efficient 
in the estimation of the models. However, apart from the different level-1 
distributional assumptions (see section 2.5. of the Methodology Report) the 
same process would be followed for fitting the first formulation as well." 
 
The dataset includes data on accidents and persons killed, as well as alcohol 
and speed police controls data for the 49 counties and 12 regions of Greece for 
the period 1998-2002. Part of this dataset was also used in section 2.3.4 of the 
Methodology report (multilevel models for count data) and in the related 
demonstration for the Manual. In this section, a variable corresponding to the 
number of persons killed was also included. 
 
More specifically, the variables and values used are summarized in the 
following Table: 
 
Region 1-12 regions of Greece 
County 1-49 counties of Greece 

Accidents The number of accidents of each county 
Killed The number of persons killed of each county 
alcohol The number of alcohol controls of each county (1000 alcohol 

controls) 
Speed The number of speed infringements of each county (1000 speed 

infringements) 
logepop  The natural logarithm of the population of each county 
Cons The constant term (1) 

 
It is reminded that the counties of Athens and Thessalonica (large metropolitan 
areas with disproportionally high numbers of road accidents, persons killed and 
police controls) are not included in the dataset. It is also reminded that the 
explanatory variables (alcohol and speed controls) are centered around their 
mean to avoid numerical problems in the estimations. 
 
 
▪  Open the dataset MultivariateManualData2.ws using the Open Worksheet 

option from the Files menu. Opening the Names window from the Data 
Manipulation menu gives the following: 
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As described in the multivariate multilevel models Methodology report, the two 
responses will be treated as 2nd level grouping and the actual values of both 
responses will be treated as 1st level units. In order to define the bivariate 
structure: 
 
▪  Click on the Responses button in the Equations window 
▪  In the Specify responses window, click on accidents and killed and then click 

Done: 
 

 
 
The Equations window should now look like this: 
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Moreover, in the Names window, we can see that two new variables were 
created; the variable the variable resp_indicator, which is a binary variable 
separating the two responses (i.e. indicating to which response the current data 
row applies to), and resp, which contains the respective actual values of the two 
responses.  
 
Note also that the variable resp includes exactly twice the number of entries of 
each response, i.e. 2*245=490. Moreover, the minimum and maximum values 
of this variable are the minimum and maximum values of the grouped values of 
both responses. 
 

 
 
However, so far we have specified a single level model. In order to define the 
multivariate two-level structure, we should specify that counties are nested 
within responses. 
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▪  Click on resp1 or resp2 in the Equations window 
▪  In the Y variable window, select 2-ij from the N levels: drop down list and 

county from the level 2(j) drop down list, and click Done. 
 
If we click on resp1 or resp2 again, we can see that the county has been 
replaced by a new variable county_long (see below picture on the right). 
 

 
 
The Equations window should now look like this: 
 

 
 
 
It is interesting to see how the multilevel modelling properties are exploited to 
build the multivariate structure out of the initial dataset.  
 
▪  From the Data Manipulation menu on the main toolbar, select View or Edit 

Data. 
▪  Click on the view button in the Data window and select: county, accidents, 

killed, resp_indicator, resp and county_long. 
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We can see how the resp_indicator variable separates the two responses, while 
their respective values are stored in a single column (resp). Moreover, the new 
variable county_long is the 2nd level grouping variable. This demonstration fully 
corresponds to the general theoretical multivariate structure presented in Table 
2.5.1 of section 2.5 of the Methodology report. 
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Before we proceed in fitting the multivariate model, the distributional 
assumptions of the two responses should be specified. As discussed in section 
2.3.4, the counts of road accidents and persons killed are random counts of 
events occurring within a population and consequently they can only take 
positive integer values. Therefore, a Poisson distribution is assumed and a log 
link function should be used together with an appropriate offset term. 
 
▪  Click on the N (ΩΧ, Β) that appears for each response of the Equations 

window, select Poisson from the available distributions and click Done. 
 

 
 
 
▪  Click on the (πi) that appears for each response in the Equations window, 

select logepop as offset term and click Done. 
 

 
 
 
The Equations window should now look like this: 
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In section 2.3.4 of the Methodology report, it was shown that overdispersion 
was present in the accidents data and that extra-Poisson or Negative Binomial 
distributional assumptions would be required in order to handle this unexplained 
variation. As Negative Binomial responses are not available in this latest version 
of the software, we will model the two responses by assuming extra-Poisson 
distributions (for details see section 2.3.4 of the Methodology report). 
 
▪  Click on the Nonlinear button of the Equations window and select 

Distributional assumptions extra Poisson. 
 

 
 
We will now enter variables in the model, starting by an intercept term.  
▪  Click on the Add Term button of the Equations window 
▪  In the Specify term window, select cons from the variable drop-down list and 

click on Add Separate coefficients. 
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▪  Click on the Estimates button of the Equations window and the parameters to 

be estimated will be highlighted in blue. The Equations window will now look 
as follows: 

 

 
 
First of all, we can see that the coefficients β0 and β1 are fixed by default (i.e. 
the option of random variation is not available when clicking on the related term 
of the model). This is due to the fact that, as explained in section 2.3.4 of the 
Methodology report, no random structure can be defined at the lowest level of a 
Poisson model, as the level-1 variance is assumed to be equal to the mean, 
and therefore known. In this case, though, the lowest level of the Poisson 
variables is level-2 of the multivariate model. 
 
Moreover, a covariance matrix for the two responses is created. In this matrix, 
two dispersion parameters α are to be estimated, one for each response, in 
order to fit extra-Poisson models, in which the variance-mean equality 
assumption is relaxed. Finally, a covariance ρ between the two responses will 
be estimated. 
 
▪  Click on the Estimation Control button of the main Toolbar and select RIGLS 
▪  Click Start to run the model. The results are as follows: 
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The intercept terms of the two responses are both highly significant. Moreover, 
a significant between-response covariance (ρ) indicates that more road 
accidents per county correspond to more persons killed per county. The 
significant dispersion parameters (α) of the two responses indicate that the 
extra-Poisson distributional assumptions adopted were reasonable.  
 
We will now introduce a (fixed) slope term in the model term.  
▪  Click on the Add Term button of the Equations window 
▪  In the Specify term window, select alcohol from the variable drop-down list 

and click on Add Separate coefficients. 
▪  Click More to run the model. The results are as follows: 
 

 
 
 
These results indicate that the effect of alcohol enforcement (alcohol.accidents 
and alcohol.killed) is significant both for the number of accidents and for the 
number of persons killed. 
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We will now proceed in building a three-level model, in order to investigate 
regional effects. This third level is created above the existing 2nd level, which 
corresponds to the counts of the two responses at the county-level. 
 
▪  Click on resp1 or resp2 in the Equations window 
▪  In the Y variable window, select 3-ijk from the N levels: drop down list and 

region from the level 3(k) drop down list, and click Done. 
 
If we click on resp1 or resp2 again, we can see that the region has been 
replaced by a new variable region_long (see below picture on the right), in order 
to comply to the multivariate structure specified previously. 
 
 
 

 
 
 

It is interesting to note that, in the Names window, several new variables have 
been created (cons.accidents, cons.killed, alcohol.accidents, alcohol.killed), as 
a result of the previous two-level modeling, in order to define the intercept and 
slope terms for each one of the responses. The additions of the 3rd level 
resulted in the creation of the variable region_long. 
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Delete the terms alcohol.accidents and alcohol.killed from the models in the 
Equations window, in order to fit a random intercept model.  
▪  Click on cons.accidents in the Equations window 
▪  In the X variable window, click in the k(region_long) box to specify the 

random variation among regions 
▪  Repeat for cons.killed 
 
 

 
 
 

Note that now a 3rd level covariance matrix is also to be estimated, including the 
level-3 variances of the two intercepts and their covariance. When running the 
model, the following output is produced: 
 



Chapter 2 

 

 
 
A significant regional variation of both road accidents and road accident 
casualties and a significant covariance between the two intercepts are obtained. 
However, the regional variation of the intercept is higher for the number of 
persons killed. Moreover, the covariance between responses (ρ) and its 
significance is reduced. We may conclude that the variations of accidents and 
persons killed follow the same trend both at national level and within different 
regions  i.e. some of the covariance between accidents and persons killed is 
situated at the regional level. 
 
 
The final stage of the modeling concerns the introduction of a random slope. 
▪  Click on the Add Term button of the Equations window 
▪  In the Specify term window, select alcohol from the variable drop-down list 

and click on Add Separate coefficients, as shown above. 
▪   Right-click on the Ων term in the Equations window and select Set diagonal 

matrix from the menu displayed. 
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By setting a diagonal matrix, the covariances among intercepts and/or slopes 
are all assumed to be equal to zero. Although a number of limitations might be 
considered to arise from this assumption, in the framework of the present 
demonstration it is adopted mainly for practical reasons (i.e. numerical 
instabilities and convergence problems were encountered in the full matrix 
consideration). 
 
Consequently, the Equations window will now look like this: 
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▪  Click More to run the model. The following results are displayed: 
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In order to display more decimals in the values of the variance matrix: 
▪  In the Options main menu, select Numbers(display precision and missing 

value code) 
▪  In the Settings window that appears, set digits after decimal point equal to 5 

and click Apply. Then click Done. 
  
 

 
 
 
The Equations window should now look like this: 
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The fixed effect of enforcement on the number of accidents is higher compared 
to the related effect on persons killed. The regional variation of the effect of 
alcohol enforcement effects is only significant as far as the number of accidents 
is concerned. In particular, the effect of alcohol controls on persons killed does 
not vary significantly among regions. These results are further interpreted in 
section 2.5 of the Methodology report. 
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2.6 Structural equations models 

As explained in the methodology report, the application of a structural equation 
model requires large amounts of data and also of a certain quality. In practice, 
these models are only applied in studies that have been planned to produce 
data suitable for this type of analysis. Moreover, the conduction of structural 
equation modelling requires a high level of expertise, which to deliver would 
exceed the scope of the present document. A number of good tutorials, 
exclusively dedicated to structural equation modelling are on the market (c.f. 
www.ssicentral.com ). Consequently it was refrained from presenting the 
practical instruction for recapitulating the example in the methodology report. 
 

2.7 More complex data structures 

In the respective section of the Methodology report (D7.4), several particular 
cases of multilevel models, mainly referred to as "non-hierarchical" models were 
presented (i.e. cross-classified structures, multiple membership structures). 
These issues were mainly presented for completeness' sake and no practical 
examples were provided; non-hierarchical structures are seldom encountered in 
road safety research 
 
 

2.8 Bayesian estimation in multivlevel modelling 

Estimation methods based on simulation techniques (i.e. Monte Carlo Markov 
Chain methods, bootstrap methods) for fitting these models (and multilevel 
models in general) were presented. The models for dealing with these 
structures are still under further development. Moreover, a detailed presentation 
advanced estimation methods (e.g. simulation techniques) is beyond the scope 
of this document. Consequently, no manuals are provided for this section. 
 
 



 

Chapter 3 - Time series analysis 

3.1 Introduction to time series models 

Ellen Berends and Frits Bijleveld (SWOV) 

 
In the SafetyNet project, many road traffic data are collected that consist of 
repeated measurements over time. Examples are the annual or monthly 
number of road traffic accidents in a country, its annual or monthly number of 
road traffic fatalities, its annual or monthly number of vehicle kilometres driven, 
its annual or monthly values on safety performance indicators, etc., all 
repeatedly measured over a certain period of time. Whenever one is interested 
in studying and analysing such developments of one and the same 
phenomenon over time, special issues arise not encountered in cross-sectional 
data analysis. An important issue is that the residuals, although assumed to be 
independent in the (cross-sectional) model specification, as demonstrated in the 
methodology report may in fact not be independent of one another. This 
violation may result in unreliable test statistics, and thus unreliable inferences 
from the models. 
 
The problem of dependencies between the residuals in the traditional linear 
regression analysis of time series data may sometimes be solved in a number 
of different ways: 

• additional predictor variables can be added to the regression of the 
dependent variable on time such that the dependencies are removed from 
the residuals, and/or  

• the relation between the dependent variable and time can be analysed with 
generalised linear models and/or non-linear models, and/or 

• the dependent variable can be analysed with a special family of analysis 
techniques collectively known as time series models. The most common 
dedicated time series analysis techniques used in road safety analysis are 
ARIMA, its special case DRAG and state space models. 

 
In the manual, we only deal with the dedicated time series methods. As in 
principle the DRAG method can be regarded as a special case of ARMA-type 
modelling, this approach is also not covered. However, linear regression model 
is included because it is used in the methodology report to demonstrate the 
identification and consequences of dependency of residuals and it is well 
known. Because linear regression is so well known, it is assumed to be a better 
starting point than dedicated time series analysis methods,  namely ARMA-type 
models and state space models, which are discussed as well. 
 
The first part of the chapter on Time Series Analysis shows when linear 
regression can be used for repeated measurements over time. It is 
recommended to read this chapter before starting with one of the dedicated 
time series methods. Austrian fatalities from the period from 1987 to 2004 was 
used as example to show which tests have to be carried out to test the Gauss- 
Markov assumptions, which are the conditions for linear regression. Linear 
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regression is not the preferred model for the Austrian fatalities due to heavy 
violations of two basic assumptions. 
In the parts about ARMA-type models and state space analysis in the 
methodology report, several data series were used as examples of using the 
dedicated time series analysis techniques. We name a few interesting 
examples. An ARMA-type analysis was conducted on the monthly total number 
of French fatalities collected between 1975 and 2001. It was shown that next to 
various seasonal and economic variables, the number of fatalities is also 
affected by certain media events. Furthermore, the presidential amnesty that is 
usually given to traffic offenders during the French elections appeared to be 
associated to an increase in fatalities. A state space type of analysis was 
carried out on the monthly number of drivers killed or seriously injured (KSI) in 
the United Kingdom. It was shown that the number of KSI depends on the 
introduction of the seat belt law, the petrol price (as a indicator of mobility) and 
seasonal influences. The introduction of the seat belt law resulted in a 21.1% 
reduction of the number KSI in the UK. 
 
Numerous software packages can be used to carry out the above mentioned 
analysis techniques. The choice of one software package for this manual does 
not mean that the user, after having worked with this manual, could not apply 
this type of analysis in other software environments or new versions of the 
same software. The software is just used as a means to demonstrate the 
opportunities that dedicated time series modelling offers to road safety analysis 
and to instruct in the design and interpretation of classical linear regression, 
ARMA-type models or state space models. 
 
For linear regression and ARMA-type models, SPSS was retained because it is 
a mainstream statistics program and it is very suitable for these analysis 
techniques, in addition to being a user-friendly software (http:///www.spss.com). 
Other existing dedicated softwares, such as E-views, R and SAS Proc ARIMA 
are also appropiriate for performing ARMA-type analysis). 
 
The three probably best-known software packages which can be applied for 
state space analysis., i.e. Ox/SsfPack, STAMP, and SAS Proc UCM, while 
noting the availability in other packages, such as Splus, R, matlab and 
Mathematica, will be shortly compared below. SsfPack contains a lot of routines 
for state space analysis, and can be used in the Ox programming environment. 
By programming the user has a lot of freedom in modelling. A disadvantage of 
Ox/SsfPack is that it requires in addition to  experience in statistics and 
modelling , some experience in programming. STAMP is a user friendly, menu-
driven package specifically designed for state space analysis and is therefore 
more appropriate for instructing the possibly inexperienced road safety analist in 
state space modelling. SAS Proc UCM can handle univariate models and in the 
future multivariate models as well (Yaffee, 2003), whereas STAMP 6.0 handles 
both univariate and multivariate models. Yaffee (2003) states that SAS Proc 
UCM is "powerful and easy to use" and that "STAMP handles a wide variety of 
models". Furthermore, STAMP has good graphical options, can display 
forecasts with error margins, and its algorithms are fast. Judge and Ninomiya 
(2000) make the following remark, which is very relevant in the light of the 
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manual's objective: "even those who are inexperienced with structural time 
series modelling can use STAMP to familiarise themselves with this approach". 
It was this, its relatively small size (and price), and its dedicatedness to state 
space analysis which made us choose STAMP for structural time series 
modelling. 
 



 

3.2 Classical linear and non-linear regression models 

3.2.1 Classical linear regression models 

 

Christian Brandstätter and Andrea Angermann (KfV) 

 

3.2.1.1. Introduction 

 
The goal of this chapter is to demonstrate how to apply linear regression 
models to Austrian road accident fatalities data and how to determine if a trend 
in the counts of road accident fatalities can be derived. Some practical 
computations using SPSS software (version 14.0) on these data are presented. 
However, the different views on the assumptions underlying data testing are 
considered more important than the resulting regression line with its 
parameters. 
Screenshots and descriptions are used to explain the steps and results in the 
process of data analysis; for more detailed information on the theoretical 
background, please see the corresponding theorie chapter. For further 
explanations regarding SPSS, we refer the reader to the SPSS user manuals. 
 

3.2.1.2. Dataset description 

 
Austrian data from the period from 1987 to 2004 is analyzed in this tutorial. The 
raw dataset imported to SPSS is shown in the following table. The time variable 
“Y/M” and number of “Fatalities” can be seen.  
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The option “Variable View” displays all definitions and attributes of the used 
variables in the data set: 
 

 
 

3.2.1.3. First heuristic view of data 

In order to get a first impression of the time series data, it is recommended to 
generate a simple scatter plot of fatalities over time. In the following 
screenshots the necessary steps for this procedure in SPSS are being 
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explained. Simple scatter plot has been chosen because the data only contains 
one data series. 
Choose from the menu “Graphs” the option “Scatter/Dot…”. After choosing a 
“Simple Scatter”, click “Define”. Mark and click the variable “Year/Month” in the 
X-axis, the variable “Fatalities” in the Y-axis. After clicking “Ok”, the SPSS-
processor starts with producing the scatter graph which is shown in Output 1. 
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The figure displayed below shows the structure of data at a glance: a 
decreasing development of counts of fatalities over time. 
 

 
 
A first attempt to describe this development mathematically could be carried out 
by fitting a simple linear regression. The next step to get a better impression of 
the data is to generate a linear regression line in the scatter plot. 
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For this step click on the graph, click the right mouse button and open the 
“SPSS Chart Object”. In the now new opened window “Chart Editor”, you 
choose “Elements” and click “Fit Line at Total”. In the new opened window 
“Properties” you choose “Linear” and click “Apply”. As a result you can see the 
linear regression line in the chart and you can close the “Chart Editor” in order 
to return to the “Output”-window. 
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The scatter plot above may be roughly interpreted with the help of a linear 
regression model. At this stage of data processing there is no reason for not 
applying this model; therefore next steps and analyses should be started. 
 

3.2.1.4. Linear regression: 

The linear regression is generated with road accident “Fatalities” in Austria as 
dependent variable and “Year/Month” as independent variable. The time series 
starts in January 1987 and ends in December 2004. 
 
The next figures show the necessary operations for calculating a linear 
regression: 
Choose from the menu “Analyze” “Regression” and click “Linear”. 
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Then mark and click the variable “Fatalities” in the “Dependent” field, the 
variable “Year/Month” you click in the “Independent” field. Then click the button 
“Statistics”: 
 

 
 
In the “Linear Regression: Statistics”-window choose the regression coefficients 
“Estimates” and “Confidence intervals”, as well as the option “Model fit” and the 
residuals “Dubin-Watson” and “Casewise diagnostics” [1]. Define the “Outliers 
outside:” with “3” standard deviations and click “Continue”. 
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The result (see the Output-window stated below) shows a highly significant 
decrease in the count of fatalities; this is explained in the coefficients-table: 
  
� The variable “Year/Month” is negative (-0.520 for the standardized 

coefficient Beta, the unstandardized coefficients can be used on the original 
data with fomula 3.2.1 in the corresponding chapter in the methodology 
report) and shows a very “high” significance of < 0.0001: a significance 
value of less than 0.05 means that the variation explained by the model is 
not due to change.  

Furthermore, the regression model has a reasonable fit: 
� The ANOVA table reports a significant F statistic because its significance 

value is below 0.05. 
� R Square in the Model Summary table shows that the regression explains 

27.0% of the variance of the data. 
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The residual analysis in the table Casewise Diagnostics shows one outlier with 
case “1” in January 1987. In this stage of the calculations/analysis no 
assumptions can be made why case “1” is an exceptional case. Presently, no 
further analysis on the cause of this outlier is being made. 
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3.2.1.5. Condition testing (Gauss-Markov Assumptions) 

The testing of the Gauss-Markov assumptions can be done by clicking “Plots” in 
the linear regression. The underlying assumptions are [1]: 
 
� The random errors are distributed normally. 
� The value for the error term associated with any different observations is 

independent. The error associated with one value of y has no effect on the 
errors associated with other values. This means that all autocorrelations of 
the errors are near 0. 

� The variance of the error term is constant across cases (x) and independent 
of the variables in the model. This is called homoscedasticity, or 
homogeneity of the variance of error. An error term with non-constant 
variance is said to be heteroscedasticit. 

� The prediction error ε is uncorrelated with x, the independence assumption. 
This assumption is fullfilled when dealing with road accident time series.  As 
we are dealing with univariate data in this example the problem of co-
linearity is not relevant. 

 
For all these assumptions visual and numeric representations are being 
generated (based on statistic inference). The statistical tests give detailed 
information whether the statement is valid or not. The advantage of the 
graphical analysis is that deviations and type of deviations from the tested 
conditions/assumptions can be detected more easily. 
 

Normal distribution of random error 

 
For a simple overview of the distribution of the variables, the graphical 
representation can be used. Choose the linear regression from the menu 
“Analyze” and choose the dependent and independent variable respectively, as 
described above. Then click the button “Plots”. 
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A new window “Linear Regression: Plots” will be opened. Choose for the 
“Standardized Residual Plots” the options “Histogram” and “Normal Probability 
Plot”, and then click the button “Continue”: 
 

 
 
The results you can see in the “Output”-window: 
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The assumption of a normal distribution of random error can be confirmed with 
the two graphs stated above. 
 
For the numeric testing the 1-Sample Kolmogorov-Smirnov test [1] has been 
used, this is an inference statistic using a non-parametric test. If the 
Kolmogorov-Smirnov test is not significant, the assumption of a normal 
distribution of random error can be confirmed. 
 
To start this test, choose from the menu “Analyze” the “Nonparametric Test” “1 
Sample K-S”. You can see the result in the Output-Window. 
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The result stated above shows that also the not significant Kolmogorov-Smirnov 
test (Asymp. Sig. (2-tailed) = 0.316) confirms the normal distribution of the 
random error. 
 

Independency of Variables 

The autocorrelation function (ACF) is used to verify the assumption that the 
error term associated with any different observations is independent of any 
other. For these computations both a graphical and a numeric method exists. 
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To start the computation of the autocorrelation function, choose the option 
“Time Series” from the “Graphs”-menu and click “Autocorrelation”. 
 

 
 
The variable you choose is the dependent one (“Fatalities”): click in the 
“Autocorrelation”-window the button “Options” and define there the maximum 
number of legs to “24”. Close this window with “Continue” and start the analysis 
in the “Autocorrelation” window with the button “OK”. 
 

 
 
A clear seasonal pattern of the autocorrelations can be identified in the diagram 
stated below with large peaks at 12 and 24 month. this pattern also exceeds the 
confidence band. Through this test the assumption that the error term 
associated with any different observations is independent of any other, can not 
be confirmed.  
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The same result is obtained with the following Box-Ljung-statistics, which is part 
of the executed ACF and is also presented in the Output window below. The 
Box-Ljung test tests the significance of autocorrelation at each lag. All 24 lags 
show a highly significant autocorrelation. 
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Homoscedasticity Assumption 

The homoscedasticity assumption specifies that the variance of the error term is 
constant across cases and independent of the variables in the model. This is 
the last tested and described assumption in this chapter; again a graphical and 
inference-statistical method is being used. 
To compute the necessary plots, a number of new variables have to be created 
with the regression procedure. 
 
Choose the linear regression model as shown in the example above, before 
clicking “OK”, click the button “Save”. 



Chapter 3 

 

 
 
In this new opened window you choose the predicted values “Standardized” and 
the “Unstandardized” and “Standardized” residuals. Go on with the button 
“Continue” and then click “OK” in the “Linear Regression” window. 
 

 
 
For the three new variables RES_1, ZPR_1, ZRE_1 see the data view in the 
SPSS-data file: 
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The three new variables are used to generate the variables “square of 
standardized residuals” and “absolute value of standardized residuals”. To 
generate them, choose from the menu “Transform” “Compute”. 
 

 
 
In the newly opened window “Compute Variable” you name the target variable 
“ZRE2”. Then you have to enter the numeric expression: Mark and click from 
the list of variables the “Standardized Residual” (ZRE_1) in the numeric 
expressions field, insert from the key pad * (for multiplication) and put once 
more the ZRE_1 variable in the numeric expressions field. Click “OK” for 
starting the computation process. 
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To compute the last variable (ZRE_ABS), choose from the menu “Function 
group” the type “All” and double-click “ABS” to put it in the field “Numeric 
Expression”. In the given bracket mark and click the variable “ZRE_1” 
(standardized residual). Click “OK” to compute the variable ZRE_ABS. 
 

 
 
As a result five new variables have been retrieved. 
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Descriptions and definitions can be seen in the “Variable View”-window: 
 

 
 
With these new variables the assumption testing can be started. The scatter 
plots are derived with the same steps that are already explained above. 
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All four plots, especially the last two, show a distinctive pattern that indicates 
heteroscedasticity. 
 
To complete the analysis with an inference-statistical model, the White-Chi 
Square test [1] is used. To compute this test, “R square” of the regression of the 
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time series on “Squared Standardized Residuals” (ZRE2) is needed. Start the 
linear regression as explained above with “ZRE2” as dependent and 
“Year/Month” as independent variable. 

 
 
The output of “Model Summary” contains the R square with 0.052. 
 

 
 
The actual test can be easily done in Excel. Enter in a new excel spread sheet 
the computed R-square and the number of cases (n=216 in our example). The 
White Chi square is the multiplication of both. 
 

 
 
To calculate the “Chivert” “1-alpha”, insert the Excel-function “Chivert” in the cell 
B6 and put in brackets the White Chi square (cell B4) and, after the semicolon, 
“1” for the number of the degrees of freedom. 



  3.2 Classical linear regression models 

 

 

  
P r o j e c t  c o - f i n a n c e d  b y  t h e  E u r o p e a n  C omm i s s i o n ,  D i r e c t o r a t e - G e n e r a l  T r a n s p o r t  a n d  E n e r g y  

 

Page  1 29  

 
 
The result of “1-alpha” presents a highly significant deviation from the 
homoscedatisticity-assumption: 
 

 
 
 
3.2.1.6. Conclusion 
 
The conclusion of the results from the presented tests is that linear regression is 
not the preferred model in this case. Due to heavy violations of two basic 
assumptions of the model to fit time series data, a different and more advanced 
model specialised on time series data should be applied and will be 
demonstrated in the following chapters. 
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3.2.2 Generalized linear models (GLM) 

As explained in the Introduction, this manual focuses on state-of-the-art 
dedicated time series techniques. Generalized Linear Models (GLM) are a 
useful and flexible technique that can be applied for time series analysis, 
however they do not by definition take into account the time dependence 
between observations; these dependences can only be considered by 
extending the GLM approaches with time series properties. In this sense, GLM 
are not dedicated time series techniques, like the ARMA-type and state space 
techniques. Consequently, no manuals are provided for GLM in time series 
analysis. 
 

3.2.3 Non-linear models 

Similarly to the Generalized Linear Models (GLM), Non Linear models are also 
a possible technique that can be used for time series analysis. However, they 
also can take into account the time dependence between observations only by 
extending the models accordingly; therefore they can not be considered as a 
dedicated time series techniques, like the ARMA-type and state space 
techniques. Consequently, no manuals are provided for Non Linear models in 
time series analysis. 
 

3.3 Dedicated time series analysis in road safety 
research 

The respective section in the methodology report is an overview section that 
does not contain empirical examples. Consequently there is no manual part for 
this section. 
 



 

3.4 ARMA-type models 

 Ruth Bergel and Mohamed Cherfi, INRETS 

 

3.4.1 Introduction 

The objective of this part of the manual is to introduce technical aspects of time 
series modelling using ARMA-type models, applied to road safety analysis. 
 
The section is structured in three parts. In Section 3.4.2, it is briefly recalled to 
the reader that he should refer to the respective section 3.4.2 of the 
Methodology Report, in which several ARMA models were fitted on simulated 
stationary datasets. Section 3.4.3 presents an example of ARIMA model 
estimated on non seasonal (yearly) real data, without any use of exogenous 
variables. And in Section 3.4.4, ARIMA models estimated on seasonal 
(monthly) real data have been chosen and exogenous variables, whether 
intervention variables or explanatory variables, have been succeedingly 
introduced in the model.  
 
Each case of real data retained in this manual is a non-stationary case: of first 
order (the mean of the process varies over time) and of second order (the 
variance of the process varies over time), this being the general case for risk 
indicators in the road safety field. 
 
Because of that non stationarity in variance, the dependent data were 
systematically Log-transformed. As for the exogenous (independent) variables, 
which are always considered as known (non stochastic, or in other words, not 
under measurement errors), the ones retained for measuring the traffic volume 
or the petrol/gasoline price were Log-transformed; whereas the intervention 
variable was used in a linear form (see the Methodology Report). 
 
The detailed specification of the ARMA-type estimated models cannot be found 
in the manual but is described in the Methodology Report. Note that 
explanations for the ARMA structure, applied to the stationary datasets derived 
from the initial ones, are to be found in section 3.4.2 of the Methodology Report. 
 
For each of the data cases, we first followed the succeeding steps for fitting 
pure ARIMA models on the datasets: 
 
� Data description  
� Model identification 
� Model estimation and validation 
� Graphical results and additional (normality) test 
 
We then used external information by means of adding intervention and 
explanatory variables into the pure ARIMA models in view of taking account for 
certain risk factors, road safety measures or special events. 
For each example the parameters of the exogenous variables were interpreted, 
and the gain in fit statistics was measured. 
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SPSS (Version 14.0) was used for this work.  
 
Regarding the output obtained after each model estimation, the following results 
are systematically given: 
 

- three tables (model fit, model statistics, and ARIMA model parameters), 
- the ACF plot (and PACF plot) of the residuals 
- two graphs (the observed and the fitted series on the one hand, and the 

residuals on  the other hand), 
- and the results of additional tests of normality of the residuals. 
 

The first of the three tables provides Goodness-of-Fit Measures* (which enable 
to evaluate the model’s empirical performance): 
 
� Stationary R-squared 
� R-squared  
� RMSE 
� MAPE  
� MAE 
� MaxAPE 
� MaxAE 
� Normalized BIC 
  
The second table provides mainly the Ljung-Box statistic** (which enables to 
evaluate the model specification),  

 
The third one provides the Model parameters (the estimated model parameters 
and their significance). 
 
As for the normality of the residuals test, two plots were systematically given 
(the histogram and the QQ-plot), and the non-parametric Kolmogorov-Smirnov 
statistic *** 
 
 
 
---------------------------------------------------------------------------------------------------------- 
 (*) The first of the three output tables provides Goodness-of-Fit Measures: 
Goodness-of-fit statistics are based on the original series Y(t). Let k= number of parameters in the model, 

n = number of non-missing residuals. 

 
� Stationary R-squared. It compares the stationary part of the model to a 
simple mean model. This measure is preferable to ordinary R-squared when there 
is a trend or seasonal component in the series. 
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Z∆ is the simple mean model for the differenced transformed series, which is equivalent to the 

univariate baseline model ARIMA(0,d,0)(0,D,0). 

 
� R-squared. An estimate of the proportion of the total variation in the series that is 
explained by the model.  
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� RMSE. Root Mean Square Error. The square root of mean square error.  
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� MAPE. Mean Absolute Percentage Error.  
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� MAE. Mean absolute error. 
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� MaxAPE. Maximum Absolute Percentage Error. The largest forecasted error, 
expressed as a percentage  
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� MaxAE. Maximum Absolute Error. The largest forecasted error, expressed in the 
same units as the dependent series 

))(ˆ)(max( tYtYMaxAE −=  

� Normalized BIC. Normalized Bayesian Information Criterion.  

n

n
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-------------------------------------------------------------------------------------------------------------- 
(**) The second table provides mainly the Ljung-Box statitistic (which enables to evaluate the 
model specification),  
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where kr  is the kth lag ACF of residual. 

Q(K) is approximately distributed as )(2
mK −χ , where m is the number of parameters other than the 

constant term and predictor related-parameters. 

 
(***)The two one-sided Kolmogorov-Smirnov test statistics are given by:  
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where F(x) is the hypothesized distribution. 
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3.4.2 ARIMA models for stationary series (simulated data) 

 
Stationary series are usually not found in the road safety field. Therefore, 
simulated stationary data samples were used in a first approach, on which 
ARMA models were fitted. The structure of these simple models is similar to the 
structure of the more elaborated models which will be fitted on real road safety 
data, as far as handling their stationary part is required. 
The reader will therefore refer to the respective section of the Methodology 
Report, in which the modelling stages are described and the modelling results 
given. 

3.4.3 ARIMA models for non seasonal series (Norwegian 
Fatalities) 

 

3.4.3.1. Data description  

 

1. Start of analysis and data load 

 
� First, we start SPSS.   
Use the menu <File, Open, Data …> to open the file 'Norw_Fatalities.sav'. 

 
 

This data file consists of the annual number of people killed in road traffic in 
Norway for the years 1970 to 2003 ('Norw.Fatalities') and of the logarithm of the 
latter time series ('LNorw.Fatalities'), and of two additional variables, labelled 
YEAR and DATE (note that all variables are described in the Variable View). 

2. Graphical diagnostics 

The data are represented graphically in a time series plot. This will help show 
up important features such as trend and, eventually, seasonality. The time 
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series plot can also help deciding whether a preliminary transformation 
(logarithmic transformation, filtering,) is required on the data. 
 

• Click on Graphs..Sequence 

• Move Norw.Fatalities into the Variables list box 
 

 

 
 

The plot shows the existence of a decreasing trend in the time series (first order 
non stationarity). 
 
 By taking the logarithm of these data, we can stabilize the data variance 
(second order non stationarity). 
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• Click on Graphs..Sequence 

• Remove Norvw.Fatalities from the Variables list box 

• Move LNorw.Fatalities into the Variables list box 
 

 

 
 

3.4.3.2. Model identification 

The model identification consists in determining the three integers p, d, and q in 
the ARIMA(p,d,q) process generating the series. 
 
The ACF plot will be used to detect the presence of non stationarity in the data. 
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• Click on Graphs..Time Series..Autocorrelations 

• Move the variable LNorw.Fatalities into the Variables list box 

• Click on the Options pushbutton 

• Replace 16 with 60 in the Maximum number of lags text box 
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The ACF plot indicates the presence of non stationarity: this is due to the fact 
that the autocorrelations do not decrease at an exponential rate, after a certain 
order. 
 

We shall therefore now differenciate the series, by applying the difference filter 
BBF −= 1)(  to the data B being the backshift operator. 

 

• Click on the Dialog Recall button  , and then click on Sequence 
Charts 

• Click on the Difference check box, and verify that 1 is in the Difference 
text box. 
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The ACF plot of the filtered series will be used once again, to detect the 
presence of nonstationarity in this filtered dataset. 
 

• Click on Graphs..Time Series..Autocorrelations 

• Move the variable LNorw.Fatalities into the Variables list box 

• Click on the Difference check box, and verify that 1 is in the Difference 
text box. 

• Click on the Options pushbutton 

• Replace 16 with 60 in the Maximum number of lags text box 
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The ACF plot of the filtered series does not indicate the presence of remaining 
non stationarity. 
 
 We shall therefore accept the hypothesis that this filtered series is stationary, 
which enables to retain d=1 for the value of the integer d.  
 
Second, the choice of p=0 and q=1 is made by examining the ACF and the 
PACF plots taken together:  we choose to fit the data with an ARIMA(0,1,1) 
model.  
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3.4.3.3. Model estimation and validation 

• Click on Analyze..Time Series..Create Models 

• Move the variable LNorw.Fatalities into the Dependent Variable(s) list 
box. 

• From the Method box, select  ARIMA modelling method 

• Click on Criteria then enter values for the three integers p,d,q. 
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• Click on Statistics then check parameter estimates in the Statistics for 
Individual Models list. 
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• Click on Plots and check Observed Values, Fit values, Residual 
autocorrelation function (ACF) in Plots for Individual Models. 

 
 

• Click on Save and check Noise Residuals then Click on OK. 
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Model Description ARIMA(0,1,1) 
 
The results obtained after the estimation procedure (maximum likelihood) are 
presented and commented below. 
  

Model Fit 
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Due to the presence of the trend, the stationary R-squared is only 16,7% (the 
model explains 16,7% of the variance of the filtered data, compared to a 
regression model), and much smaller than the R-square which is 78,9% (the 
model explains 78,9% of the variance of the initial data). 
 
As for the different measures of the error made: 
the mean absolute percentage error (MAPE) is 1,36% %, its highest value 
observed being 3,915%, 
the mean absolute error (MAPE) is 0,08, its highest value observed being 0,23, 
the root mean square error (RMSE) is 0,099, and is a little higher than if it were 
computed as an arithmetic mean (0,08), 
 
At last, the normalized BIC, which is -4,413, is a goodness of fit measure that 
takes account of the parsimony of the model. Note that, as it is the case for the 
R-squared, its interest lies in comparisons between several nested models, and 
not in its absolute value. 
 

 
 
Model Statistics 

 
The Ljung-Box statistic provides an indication of whether the model is correctly 
specified, in the sense it allows testing the global nullity of the autocorrelation of 
the residuals (of each autocorrelation, of order 1 up to order 18).   
In our case, this hypothesis is accepted, because the 0,510 value of the Ljung-
Box statistic is more than 0.05.   
 
ARIMA Model Parameters 
 
The ARIMA model parameters table provides estimates of the model 
parameters and associated significance values (at the usual 95% confidence 
level). A t-value higher than 1,96 indicates that the hypothesis of nullity of the 
parameter has to be rejected, and that the parameter can thus be considered as 
significantly different from 0.  
In this case, the hypothesis of nullity is rejected in both cases, and the two 
parameters of the ARIMA models are to be considered as different from zero. 
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In addition to the preceding Ljung-Box test, of global nonautocorrelation of the 
residuals (correct specification of the model), the hypothesis that each 
autocorrelation of the residuals is zero can be tested using the above ACF plot. 
The computation of confidence regions enable to determine visually whether it 
is the case (at the usual 95% confidence level). It is the case indeed  for this 
example. 
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3.4.3.4. Graphical results and additional test 

 Graphical outputs  

 

The preceding plot describes the development of the observed and fitted series. 
Note that, due to the use of the filtered state used for computing the fitted 
values, the fitted data appear to stay one step behind the observed data.   
 
Second, the plot of the estimated residuals - the difference between the 
observed and the fitted data plotted first - is to be considered: 
 

• Click on Graphs..Sequence 

• Remove LNorw.Fatalities from the variables list box 

• Move Noise residual into the variables list box 

•  
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Note that it is very difficult, on this example, to determine visually whether the 
residuals are a white noise or not. 
In addition to the nonautocorrelation hypothesis, the Gaussian hypothesis has 
to be validated too, which then enables to consider the residuals as an 
independent series - or white noise.  
Nevertheless, note that the Gaussian hypothesis is not necessary, and that the 
residuals can be a white noise even if this condition is not fulfilled. The 
hypothesis of independence is then to be tested directly, which will not be the 
case in this manual. 
 

Normality test  

 

We shall now give the histogram of the residuals (which gives a general idea of 
whether the residuals are Gaussian), the QQ-plot (which is a graphical test of 
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this hypothesis), and at last the result of the Kolmogorov-Smirnov test (which is 
a non-parametric test of this hypothesis). 
 

Histogram 
 

• Click on Graphs..Histogram… 

• Move the variable NResidual_LNorv_Model_1 into the Variable list box. 

• Check Display normal curve, then click on OK 
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In the case the Residuals have a normal distribution, the histogram looks 
approximately like the normal curve, and the difference area between the two 
graphs is minimal. 

 
QQ-plot 
 

• Click on Graphs..QQ.. 

• Move the variable NResidual_LNorv_Model_1 into the Variables list box. 

• Choose Normal from Test Distribution, then click on OK. 
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The normal Q-Q plot compares the distribution of a given variable to the normal 
distribution (represented by a straight line). The straight line represents what the 
residuals would look like if they were perfectly normally distributed. The 
residuals are represented by the circles plotted along this line. The closest the 
circles are to the line, the best the normality hypothesis is fulfilled. 
 

Kolmogorov-Smirnov Test 

 

• Click on Analyze..Non parametric Tests..1-Sample K-S…  

• Move the variable NResidual_LNorv_1 into the Test Variable List box 

• Check Normal in Test Distribution list, then click on OK. 
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In the case the Kolmogorov-Smirnov test is significant, the normal distribution of 
the residuals hypothesis is to be rejected.  
In our case, this  hypothesis is accepted, because the 0,713 value of the 
Asymp. Sig. (2-tailed) is more than 0.05 (at the usual 95% confidence level).   
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3.4.4 ARIMA models for seasonal series (UK-KSI Drivers) 

 
The dataset presented in this section is the monthly number of drivers killed and 
seriously injured in the United Kingdom (UK-KSI), for the period January 1969 - 
December 1984 (as described in Harvey and Durbin, 1986). A pure ARIMA 
model will first be fitted on these data, and an intervention variable and two 
explanatory variables will be introduced in the model in the two following steps 
(see the Methodology Report). 
 

3.4.4.1. Data description 

 

1. Start of analysis and data load 

 
� Use the menu <File, Open, Data …> to open the file ‘UK_KSI.sav’. 
 

 
 

The data file consists of the following variables: 
DRIVERS: The number of drivers killed or seriously injured.  
Interv: The intervention variable 
TRKM: The car traffic index 
PPRICE: The petrol price. 
The log transformed variables of the preceding ones, to the exception of the 
intervention variable, are included in the data file, and three additional variables 
YEAR MONTH and DATE (see the Variable View, in which all variables are 
described). 
 

2. Graphical diagnostics 
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• Click on Graphs..Sequence 
• Move DRIVERS into the Variables list box 
 

 
 

 
 
 
 

• Click on Graphs..Sequence 
• Remove DRIVERS from the Variables list box 

• Move DRIVERS into the Variables list box 
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3.4.4.2. Model identification 

The model identification consists in determining the six integers p, d, q (related 
to the non seasonal part of the model), and P,D,Q (related to the seasonal part 
of the model) in the multiplicative  ARIMA(p,d,q)(P,D,Q)S  formulation. 
 
As already mentioned before, the ACF plot will be used to detect non 
stationarity in the data. 
 

• Click on Graphs..Time Series..Autocorrelations 

• Move the variable LDRIVERS into the Variables list box 
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• Click on the Options pushbutton 

• Replace 16 with 60 in the Maximum number of lags text box 

• Click on Continue, and then click on OK to get a plot of the ACF plot 
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The ACF plot indicates obvious non stationarity, here again this is due to the 
fact that the autocorrelations do not decrease at an exponential rate, after a 
certain order. 
 
 We shall differenciate the series, by applying the “seasonal” difference filter 

121)( BBF −=  to the data, B being the backshift operator. 

 
 

• Click on the Dialog Recall button  , and then click on Sequence 
Charts 

• Click on the Seasonally difference check box, and verify that 1 is in the 
Seasonally difference text box. 
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No indication of remaining non stationnarity in the seasonally filtered data can 
be found in the next-coming ACF plot.   
We shall therefore accept the hypothesis that this filtered series is stationary, 
which enables to retain d=0 for the non seasonal part of the general filter and 
D=1 for its seasonal part (see the Methodology Report)..  
 
Second, the ACF and the PACF plots, taken together, lead to choose p=2 , q=0 
for the non seasonal part of the model, and P=0, Q=1 for the seasonal part of 
the model, indicating that the model is an ARIMA(2,0,0)(0,1,1)12. 
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3.4.4.3. Model estimation and validation 

• Click on Analyze..Time Series..Create Models 

• Move the variable LDRIVERS into the Dependent Variable(s) list box. 

• Choose ARIMA in the Method list. 

• Click on Criteria then specify the ARIMA model  
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• Click on Statistics tab then check parameter estimates in the Statistics 
for Individual Models list. 
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• Click on Plots tab and check Observed Values, Fit values, Residual 
autocorrelation function (ACF), in Plots for Individual Models. 

 

 
 
 
 
 

• Click on Save and check Noise Residuals then Click on OK. 
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In the output window of SPSS, we find the statistics for the chosen model as 
follows: 
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Model Description ARIMA (2,0,0)(0,1,1)  
 
The results obtained after the estimation procedure (maximum likelihood) are 
presented and commented below. 
  

Model Fit 

 
 

The stationary R-squared is only 53,0% ( the model explains 53,0% of the 
variance of the filtered data, compared to a regression model), and much 
smaller than the R-square which is 77,3% (the model explains 77,3% of the 
variance of the initial data). 
  
As for the different measures of the error made: 
The mean absolute percentage error (MAPE) is 0,902% %, its highest value 
observed being 3,841%, 
the  mean absolute error (MAE) is 0,067, its highest value observed being 
0,267, 
the root mean square error (RMSE) is 0,084, and is a little higher than if it were 
computed as an arithmetic mean (0,067), 
 
At last, the normalised BIC, which is -4,4850, is a goodness of fit measure that 
takes account of the parsimony of the model. Note that, as it is the case for the 
R-squared, its interest lies in comparisons between several models, and not in 
its absolute value.  
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Model Statistics 
In this case, this hypothesis of correct specification (global nullity of the 
autocorrelation of the residuals is accepted, as the 0,17 value of the Ljung-Box 
statistic is more than 0.05.   
 
ARIMA Model Parameters 

In this case, the hypothesis of nullity of each of the four parameters is rejected, 
and all parameters of the ARIMA model are to be considered as different from 
zero. 
 

 

 
 
The residual ACF plot indicates that no very significant autocorrelation remains, 
up to order 24. 
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3.4.4.4. Graphical results and additional test 

Graphical outputs  

 
 

As in the preceding case, the first plot describes the development of the 
observed and fitted series, and the second plot the development of their 
difference (the estimated residuals) 
 
Note that the fitted data do not appear to stay one step behind the observed 
data, as it was the case for the Norwegian fatalities model. The strong seasonal 
pattern is reproduced, which takes over the adjustment of the trend. 
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 Normality test 

 

Histogram 

 
 

QQ-plot 
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Kolmogorov-Smirnov Test 

 
 

In this case, this hypothesis of normality of the residuals is accepted, because 
the 0,66 value of the Asymp. Sig. (2-tailed) is more than 0.05 (at the usual 95% 
confidence level).   
 

3.4.4.5. Intervention variable 

In this section, we will add an intervention variable to the model, in view of 
performing a so-called intervention analysis. 
 

Data description 

 
The reason for the introduction of the intervention variable is the introduction of 
the seat belt law in February 1983. The variable will therefore be equal to 1, 
February 1983 onwards, and equal to 0 before (see the Methodology Report).  
 

Model estimation and validation 

 

• Click on Analyze..Time Series..Create Models 

• Move the variable LDRIVERS into the Dependent Variables list box and 
the variable interv in the Independent variables list box. 

• Choose ARIMA in the Method list, click on Criteria and then specify the 
model you want to estimate. 
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The Transfer Function tab (only present if independent variables are specified) 
will now be used to define the call to the intervention variable. 
 
 The Transfer Function tab allows defining transfer functions for the 
independent variables specified on the Variables tab. In this case, the 
intervention variable is the only independent variable, and the indication to be 
given is that a seasonal difference filter is used for that variable (see the 
Methodology Report).  
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Here are the SPSS results for the specified model: 
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Model Description ARIMA(2,0,0)(0,1,1) with intervention variable 
  

Model Fit 

 

  
The addition of the intervention to the model has improved the goodness-of-fit:  
the Stationary R-squared has increased (from 0,53 to 0,563). 
The R-squared has increased (from 0,773 to 0,788) 
the MAPE has decreased (from 3,841 to 2,835). 
the Normalized BIC has decreased (from -4,590 to -4,886). 
 

 
 
Model Statistics 

 
Note that, in this case, the Ljung-Box statistic value of  0,043 is smaller then 
0,05, which indicates that the hypothesis of global nullity of the autocorrelation 
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of the residuals, up to order 18, has to be rejected, at the usual 95% confidence 
level.  
 
 
ARIMA Model Parameters 

 
In this case, the hypothesis of nullity of all parameters is rejected: all four 
parameters related to the dynamics are to be considered as different from zero 
and the intervention parameter too. 
. 
The following ACF plot of the residuals indicate that the autocorrelation of order 
5, and of order 18, for instance, differ significantly from zero, at this usual 
confidence level 
 

 

 
 
 

Graphical results and additional test 

 
The two usual graphical outputs are given below, followed by the normality test 
results. 
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Chapter 3 

 

 
 
Histogram 

 
 

QQ-plot 
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Kolmogorov-Smirnov Test 

 

 
In this case, this hypothesis of normality of the residuals is accepted, because 
the 0,554 value of the Asymp. Sig. (2-tailed) is more than 0.05 (at the usual 
95% confidence level).   
 

3.4.4.6. Intervention and explanatory variables 

In this section, we will add two explanatory variables, LTRKM, LPPRICE, as 
defined above   in the database. The seat belt law intervention variable from the 
previous section will be kept in the model.  
 

Model estimation and validation 

 

• Click on Analyze..Time Series..Create Models 

• Move the variable LDRIVERS into the Dependent Variables list box and 
the variables interv, LTKRM and LPPRICE in the Independent variables 
list box. 
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As the intervention variable is the only independent variable, the indication to be 
given is that a seasonal difference filter is performed on that variable (see the 
Methodology Report). 
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Model Description ARIMA(2,0,0)(0,1,1) with explanatory variable 
  

Model Fit 
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The addition of the two explanatory variables to the model has still improved the 
goodness-of-fit:  
The Stationary R-squared has increased to 0,59. 
The R-squared has increased to 0,802 
The MAPE has decreased to 0,86 %. 
The only exception is that the Normalized BIC has increased a little, from -4,886 
to -4,881, but remains smaller than in the pure ARIMA model (64,841). 
 

 
 

Model Statistics 

 
The hypothesis of global nullity of the autocorrelation of the residuals is still 
accepted, as the statistic is 0,078, and higher than 0,05 (at the 95% confidence 
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level). 
 
ARIMA Model Parameters 

 
In this case, the hypothesis of nullity of the model parameters is rejected (at the 
95% confidence level), except for the log of the traffic index variable parameter: 
all parameters related to the dynamics are to be considered as different from 
zero, the petrol price parameter and the intervention parameter too. 
Note that, in case the confidence level is lowered to 70% for instance (t-value 
between 1 and 2), the parameter related to the traffic index variable would also 
be considered as different from zero too. 
 

 
 
  

 

Graphical results and additional test 

 
The two usual graphical outputs are still given below, followed by the normality 
test results. 
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Histogram 
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QQ-plot 
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Kolmogorov-Smirnov Test 

 
 

In this case, this  hypothesis of normality of the residuals is accepted, because 
the 0,761 value of the Asymp. Sig. (2-tailed) is more than 0.05 (at the usual 
95% confidence level).  
Note that the statistic value has kept on increasing, and has the highest value in 
this very last case.   
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3.4.5 Conclusion ARMA-type models 

 

In this manual, the general approach for performing an ARMA-type analysis 
was given and demonstrated on several examples of ARMA-type models.  
 
A pure ARIMA model was estimated on non stationary annual data (section 
3.4.3.) and ARIMA models including additional variables (intervention and 
explanatory) were estimated on non stationary monthly data (sections 3.4.4).  
 
In the case a pure ARIMA model was estimated, for descriptive or forecasting 
purposes, without any call to additional variables), the first relevant task 
consists in pretransforming the initial dataset in order to obtain another 
stationary data set. The second relevant task consists in identifying a 
parsimonious ARMA model on this second data set, and to test whether the 
main hypothesis related to the residuals of the model (non correlation, and 
normality) are valid. 
 
In the case ARIMA models including additional variables were estimated, for 
descriptive and explanatory purposes, the global model was fitted directly, and 
all parameters - whether related to the dynamics or to the exogenous effects – 
estimated altogether. 
The main hypotheses related to the residuals were tested in the same manner 
as in the preceding case. 
 
Apart of the added value due to the exogenous variables - in terms of 
interpretation of the exogenous estimated parameters - , this modelling in 
successive stages described in this manual, highlighted a general increase of 
the model fit, which was observed at each stage (see the Methodology Report 
for more results about parameters interpretation and gain in the model fit). 
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3.5 DRAG models 

The DRAG model is an important theoretical contribution to road safety analysis 
and has for the sake of completeness been described in the methodology 
report. In this manual, however, there is no section dedicated to DRAG-models 
in this manual, because they require large amounts of data which, in practice, 
are seldom available in road safety research. This manual is written as part of 
the SafetyNet project. The databases this project produces are not meant to be 
exhaustive enough for such a purpose. Moreover, the software retained for 
performing time series analysis within the project do not allow for estimation of a 
DRAG-model ( note that a software: the TRIO program, is dedicated to 
estimating DRAG models). 
 



 

3.6 State space models 

Chris de Blois (SWOV) 

 

3.6.1 Introduction 

 
The objective of this manual for state space analysis is 1) to demonstrate the 
opportunities that state space modelling offers to road safety analysis, 2) to 
instruct the reader in setting up a state space model, and 3) to instruct the 
reader how to interpret the model results. The reader does not need to be an 
expert in statistics, modelling, or programming. 
 
This state space analysis manual is closely related to Section 3.6 of the 
Methodology report, which deals with the theory behind state space modelling. 
This manual section demonstrates how the analyses discussed in Section 3.6 of 
the Methodology report are performed with a software package for state space 
analysis called STAMP 6.02. Therefore, the datasets used in this manual are 
the same as the datasets which are considered in Section 3.6. In addition to the 
theoretical sections, this manual also describes the general approach 
recommended for state space analysis of time series. This approach is 
illustrated using the dataset representing the monthly number of drivers killed or 
seriously injured (KSI) for the years 1969-1984 in the UK, which is one of the 
datasets employed in the Methodology report. 
 
STAMP 6.0, a software package dedicated to state space modelling, is powerful 
and easy to use, and is therefore also used for the state space analyses in this 
manual. STAMP 6.0 has independently been reviewed by several authors: 
Teyssière (2005), Hallahan (2003), Judge and Ninomiya (2000), and Yaffee 
(2003).  
 
Section 3.6.2 first describes in detail how to set up a deterministic level model in 
STAMP 6.0 and how to interpret the results. Then, the stochastic level model is 
described less extensively and the results of the analysis are compared with the 
results of the analysis with the deterministic model. Section 3.6.3 deals with the 
local linear trend model. The deterministic variant of this model, the 
deterministic level and deterministic slope model, corresponds to a classical 
linear regression. So, if this model is applied to the same dataset as used in the 
classical linear regression manual (Section 3.2), then the results should 
correspond to the results presented in that manual. Section 3.6.4 introduces an 
additional component: the seasonal. In Section 3.6.5 and Section 3.6.6 another 
two components are added: intervention variables and explanatory variables, 
respectively. Sections 3.6.4 through 3.6.6 demonstrate the recommended 
approach to state space analysis of time series. Finally, Section 3.6.7 contains 
                                            
2
System requirements for STAMP 6.0 are: Windows XP/2000/NT/98/95. STAMP 6.0 is available 

from Timberlake Consultants Ltd, Ujit 3, Broomsleigh Business Park, Worsley Bridge Road, 
London SE26 5BN, United Kingdom. Telephone +44 (0)20 86973377, Fax +44 (0)20 86973388. 
E-mail: info@timberlake.co.uk. Website: www.timberlake.co.uk. The main website for STAMP 
is: www.STAMP-software.com. 
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a summary of results and some general recommendations for the analysis of 
road safety data with state space techniques. 
 
The analysis of each model is subdivided into the following steps: 
1. Start of analysis and data load; 
2. Model formulation; 
3. Model estimation and inspection of results; 
4. Graphics of model components; 
5. Test of model residuals; 
6. Test of auxiliary residuals; 
7. Conclusion of analysis; 
8. Forecasting (optional); 
9. Exercise (optional). 
 
Forecasting is discussed for some of the models. Forecasts can be made only if 
the model performs well and the residuals satisfy the model assumptions. The 
additional exercise for the reader is optional as well. 
 
The following conventions concerning notation are used throughout Section 3.6: 
 
The basic explanations are in standard print, 
 
� Instructions are preceded by a bullet point,  
 

The model output is printed in Courier, 10 pnt,  
 
More elaborate explanatory texts, which can be skipped without missing essential information, 

are printed in italics,  
 
<Menu selections are placed between triangular brackets>.  
 



  3.6 State space models 

 

 

  
P r o j e c t  c o - f i n a n c e d  b y  t h e  E u r o p e a n  C omm i s s i o n ,  D i r e c t o r a t e - G e n e r a l  T r a n s p o r t  a n d  E n e r g y  

 

Page  18 7  

3.6.2 Local level model 

 
This section first presents an extensive step-by-step description of the analysis 
of the Norwegian fatalities time series using the deterministic level model in 
STAMP. The analysis includes trend description, residual testing, and outlier 
testing. Then, the analysis with the stochastic level model, or local level model, 
is described more succinctly. The latter analysis also includes forecasting over 
seven years. 
 

3.6.2.1. Deterministic level model 

The above mentioned steps will now be taken one-by-one for the deterministic 
level model. 

Step 1: Start of analysis and data load 

 
First, we open GiveWin, load the data, and start STAMP.  
� Start the GiveWin2 program. 
� Use the menu <File, Open Data File…> to open the file 

“NorwayFatalities.in7”. 
 
The data file is loaded and displayed in a minimized window at the bottom of the 
GiveWin main window. To view the data file: 
� Click on the icon with the two overlapping boxes: 
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This data file consists of two variables: the annual number of people killed in 
road traffic in Norway (see Sections 1.2.2 and 3.6.1 of the Methodology report)  
for the years 1970 through 2003 (“NO_fatalities”) and the logarithm of the latter 
time series (“Log_NO_fat”).  
 
� Minimize the data file window again and use the menu <Modules, Start 

Stamp> to start the STAMP program. The STAMP window appears: 
 

 
 

 

Step 2: Model Formulation 

 
In this step, we define the deterministic level model: 
� In the STAMP window choose the menu <Model, Formulate...>. 
� In the Data selection window select the variable Log_NO_fat. 
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� Click the Add button. 
 

 
 

� Then click OK. 
� In the Select components window, choose a Fixed Level, No slope, 

Irregular, and No seasonal: 
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� Then click on the Finish button.  
 

Step 3: Model estimation and inspection of results 

 
The third step is to estimate the model and inspect the results. 
� In the Estimate Model window, select Maximum Likelihood: 
 

 
 
� Click OK.  
 
The model is estimated, and the following output appears in the GiveWin 
Results window: 
 
---- STAMP 6.30 session started at 13:05:05 on Monday 20 February 2006 
---- 
Please cite STAMP as: 
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Koopman S.J., Harvey, A.C., Doornik, J.A. and Shephard, N. (2000). 
Stamp: Structural Time Series Analyser, Modeller and Predictor, 
London: Timberlake Consultants Press. 
 
 
Method of estimation is Maximum likelihood 
The present sample is: 1970 to 2003 
 
Equation  1. 
 
Log_NO_fat = Level + Irregular 
 
Estimation report 
Model with  1 parameters ( 1 restrictions). 
Parameter estimation sample is 1970. 1 - 2003. 1. (T =   34). 
Log-likelihood kernel is 0. 
No estimation done. 
  
Eq  1 : Diagnostic summary report. 
 
Estimation sample is 1970. 1 - 2003. 1. (T =   34, n =   33). 
Log-Likelihood is 48.1408 (-2 LogL = -96.2816). 
Prediction error variance is 0.047433 
 
Summary statistics 
              Log_NO_fat 
 Std.Error       0.21779 
 Normality        1.3457 
 H( 11)           3.6612 
 r( 1)           0.58763 
 r( 6)         -0.073609 
 DW              0.22639 
 Q( 6, 6)         28.814 
 R^2             0.00000 
 
Eq  1 : Estimated variances of disturbances. 
 
Component    Log_NO_fat (q-ratio)   
Irr            0.048583 ( 1.0000)  
 

� In the first part of the output (estimation report and above), check the output 
on the estimation method (maximum likelihood), sample period (1970-2003), 
model components (level and irregular), the number of parameters 
estimated (1), and the number of observations (T=34). 

 
The diagnostic summary report gives some additional information: number of degrees of 
freedom (T-1), log-likelihood, and prediction error variance. The log-likelihood value given is the 
log-likelihood function at its maximum value after estimation. This value is different from the 
value in Section 3.6.1.4 of the Methodology report, which is obtained from the above value by 
extracting a constant and dividing by another constant. Both constants depend on the number of 
observations T. The prediction error variance (PEV) is a basic measure of goodness-of-fit (the 
smaller the PEV, the better the fit). 
 
Next, the summary of statistics can be used to evaluate model performance 
with respect to the diagnostic tests (see Section 3.6.1.4 of the Methodology 
report). For this evaluation, we make a table like Table 3.6.1. A “+” in the last 
column of Table 3.6.1 means that the assumption is satisfied, a “-” indicates 
violation of the assumption. 
 

 Statistic Value Critical 5% 
valuea 

Assumption 
satisfied 
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Independence Q(6,6) 28.8 12.59 - 
 r(1) 0.588 0.34 - 
 r(6) -0.0736 0.34 + 
Homoscedasticity H(11) 3.66 3.47 - 
Normality N 1.35 5.99 + 
 

Table 3.6.1: Diagnostic test results for the deterministic level model applied to the log 
of Norwegian fatalities. aProbability that statistic exceeds critical value is 0.05. 

Comparison of Table 3.6.1 and the corresponding Table 3.6.1 in the Methodology report, shows 
that STAMP uses other choices with respect to the statistics than in the analysis presented in 
the Methodology report, i.e. Q(6) instead of Q(10) and r(6) instead of r(4). Below, STAMP's 
choices are amplified. 
 
Koopman et al. (2000) give more information on the summary statistics. Here, we restrict 
ourselves to some concise remarks.  

− For testing normality, the Doornik-Hansen statistic is used, which is, under the null 
hypothesis of normally distributed residuals, approximately χ2

(2)
 
distributed. 

− H(h) is a heteroscedasticity test, which is approximately F(h,h) distributed. In STAMP, “h” is 
determined as the number of degrees of freedom divided by three and rounded down to the 
nearest integer. 

− r(τ) is the residual autocorrelation at lag τ, distributed approximately as N(0,1/T). 

− DW is the Durbin-Watson statistic, which tests for residual autocorrelation at lag 1, and is 
approximately N(2,4/T) distributed. 

− Q(P,d) is the BOX-Ljung Q-statistic based on the first P residual autocorrelations, which is 
distributed approximately as χ2

(d), where d is P-m+1 with m the number of parameters. 

− R
2 

is the coefficient of determination, which is a measure of the proportion of observational 
variance which is explained by the model and as such a measure of goodness-of-fit. 

 
� At the bottom of the GiveWin results window, check whether the estimated 

variances of the disturbances are sufficiently large.  
 
A near zero variance is an indication of a deterministic component. In this model, the only model 
component which can vary, the irregular component (i.e., the observation disturbances), has 
unequal to zero. The level is fixed. In the deterministic level model, the estimated variance of 
the irregular component is equal to the variance of the series. The variance of the log of the 
number of Norwegian fatalities is therefore equal to 0.048583. The q-ratio (in the output 
between brackets) is the ratio of each variance to the largest and is equal to one, because there 
is only one variance, which therefore is the largest. 
 

Next, we will produce some additional output: 
� In the STAMP window choose <Test, Further output…> in the menu. 
� Select Additional output, Get steady state, Anti-log analysis, and State and 

regression output: 
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� Click OK. 
 
In the GiveWin Results window, the following additional results are displayed: 
 
Eq  1 : Estimated standard deviations of disturbances. 
 
Component    Log_NO_fat (q-ratio)   
Irr             0.22042 ( 1.0000)  
 
Eq  1 : Estimated coefficients of final state vector. 
 
Variable      Coefficient      R.m.s.e.       t-value 
Lvl                5.9323      0.037801        156.93  [ 0.0000] 
 
Anti-log trend analysis 
Trend value at end of period is 377.005. 

 
The estimated standard deviation of the irregular is the square root of the estimated variance of 
the irregular (see above). In the deterministic level model, the estimated standard deviation of 
the irregular is equal to the standard deviation of the observations in the series. 
 

� Check the values of the estimated coefficients of the final state vector. 
 
The final state vector contains the values of the model components for the last time step of the 
observed time series. The state only consists of a level component in this case, and the 
estimate for the value of the level in 2003 equals 5.9323, which is the mean of the log of the 
Norwegian fatalities series. Moreover, since the level is treated deterministically in this analysis, 
its estimated value is actually 5.9323 for all T=34 time points of the series. The t-statistic is 
computed as the coefficient (5.9323) divided by its root mean square error (0.0378), and is used 
to test whether the estimated value of the level significantly deviates from zero.  
 

� Test the significance of the estimated coefficients of the final state vector. 
 
Under the null hypothesis, the t-statistic has a Student's t-distribution with T-1 degrees of 
freedom. Between square brackets behind the t-value, the model output gives the probability 
that the absolute value of a Student's t-distributed variable X exceeds the actual, absolute value 
of the t-statistic, i.e. Prob(|X|>|t|). This probability is very small here, so it may seem that the 
level significantly deviates from zero. However, since the residuals do not satisfy the 
assumptions of independence and homoscedasticity (see Table 3.6.1), this t-test is seriously 
flawed, and one should be careful not to draw any conclusions from this test. 
The anti-log trend analysis presents the value of the estimated level for the original series at the 
end of the series (2003). In the deterministic level model, this value is equal to exp(mean of the 
log-transformed series). 
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Step 4: Graphics of model components 

 
Graphics enlarge the insight in the data and the model results. Therefore, we 
will generate figures of the observed and log-transformed time series and the 
estimated trend. 
� In the STAMP window choose menu <Test, Components graphics…>. 

Select Trend, Irregular and Smoothed: 
 

 
 
� Click OK.  
 
The STAMP Graphics window appears with graphs of the observed log-
transformed time series and the modelled trend and irregular: 
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� Examine the figures in the STAMP Graphics window and visually inspect the 

bottom figure of observation disturbances for possible serial correlation. 
 
The top figure shows the log-transformed observations and the estimated level, which is just the 
mean of the series. The bottom figure shows the irregular component or observation 
disturbances, which, in this case, are equal to the deviations of the observations from their 
mean value. Visual inspection of the latter figure clearly reveals serial correlation because a 
positive disturbance tends to be followed by other positive disturbances while a negative 
disturbance tends to be followed by more negative disturbances. This is confirmed by the more 
formal tests for independence presented in Table 3.6.1. 
 
� Use the menu <File, Save> or <Ctrl+S> to save these graphs, e.g. as an 

Encapsulated Postcript file (*.eps). Minimize the STAMP Graphics window. 
 
Now, we will have a look at the graphs re-expressed in terms of the original 
data (i.e., in terms of the original number of fatalities instead of their logarithm): 
� Go back to the STAMP window and choose <Test, Components 

graphics…>.  
� Select Trend, Irregular, Smoothed, and Anti-log analysis. 
� Click OK.  
 
The STAMP Graphics window appears with graphs of the original observed 
time series and the modelled (anti-logged) level and irregular components: 
 



Chapter 3 

 

 
 
� Shortly examine the figures in the STAMP Graphics window and check 

possible serial dependence of the observation disturbances. 
 
The top figure shows the original observations and the estimated level, which is equal to the 
anti-logged mean of the log-transformed series (which is not exactly the same as the mean of 
the original series!). The bottom figure shows the irregular component or observation 
disturbances, which, in this case, are equal to the deviations from the mean value. Notice that 
the mean of the irregular is around one and not zero, because of the anti-logging. 
 
� Again use the menu <File, Save> or <Ctrl+S> to save these graphs and 

minimize the STAMP Graphics window. 
 

Step 5: Test of model residuals 

 
STAMP provides the most relevant graphical residual tests as well as more 
extensive test statistics for normality, goodness-of-fit, and serial correlation. 
 
The residuals are not the same as the observation disturbances (i.e., the irregular component). 
In state space modelling, the estimation process consists of two main steps: 
- filtering, in which only the preceding observations are used and which leads to the “filtered 

state” and the “one-step ahead predictions”, and 
- smoothing, in which all observations are used and which leads to the “smoothed state” and 

the “smoothed predictions”. 
 
The residuals correspond to the filtered state, the observation disturbances to the smoothed 
state. In fact, the residuals are the standardized one-step ahead prediction errors, whereas the 
observation disturbances are the smoothed prediction errors. For more information about the 
filtered and smoothed state, see Harvey (1989) or Durbin an Koopman (2001). 
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Tests of the model assumptions are usually applied to the residuals, not to the observation 
disturbances. 
 
� Go back to the STAMP window and choose <Test, Residuals graphics…>. 
� In the Residual graphics window select Residuals, Correlogram, with 8, 

Density, Histogram, Normal, QQ plot, and Write diagnostic tests: 
 

 
 
� Click OK.  
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The STAMP graphics window in GiveWin shows the standardized residuals and 
their correlogram, density function, and normal probability plot: see above. 
 
� In the top left figure of the STAMP Graphics window, check how many 

residuals are outside the 95% confidence interval. The two confidence 
bounds are indicated by straight lines at the level of about 2 and -2. 

 
Under the assumption of normality, about 95% of the residuals should lie between the two 
confidence bounds. The figure shows that only one residual is located outside the confidence 
bounds, indicating that the residuals are acceptable with respect to this test. 
 

� In the top right figure of the STAMP Graphics window, check the 
correlogram for possible serial dependence of the residuals. 

 
The correlogram presents the residual autocorrelation for lags 1 to 8. Using a 95% confidence 
level, the autocorrelation should be between -2/√T=-0.34 and 2/√T=0.34 (see also Table 3.6.1). 
As we can see, for the first three out of eight lags the autocorrelation is outside this range, 
indicating serial dependence of the residuals. 
 

� In the bottom left figure of the STAMP Graphics window, compare the 
estimated density function with the normal density function with the same 
mean and standard deviation, in order to evaluate the degree of normality of 
the residuals. 

 
The density diagram shows the distribution of the residuals over discrete intervals in the 
histogram. The density function is estimated by “a smoothed function of the histogram using a 
normal or Gaussian kernel” (Koopman et al., 2000). From this density diagram, we can 
conclude that normality seems to be ok. This conclusion is in agreement with the conclusion on 
normality based on the diagnostic tests in Table 3.6.1. 
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� In the bottom right figure of the STAMP Graphics window, check the QQ plot 
to evaluate the degree of normality of the residuals. 

  
The QQ plot or normal probability plot is created by rank ordering the residuals from small to 
large and comparing them with the normal probability values corresponding to the cumulative 
probabilities of 1/(T+1), 2/(T+1), etc. If the residuals are approximately normally distributed, the 
plot is an (almost) straight line. From this QQ plot, we can conclude that the residuals are 
approximately normally distributed, which is in agreement with the conclusions based on the 
density diagram and the diagnostic tests (see Table 3.6.1). 
 
� Use the menu <File, Save> or <Ctrl+S> to save these graphs and minimize 

the STAMP Graphics window. 
 
In the Results window of GiveWin the following residual test results (normality, 
goodness of fit, serial correlation) have been added: 
 
Normality test for Residual Log_NO_fat 
Sample Size     33 
Mean                  -0.835567 
Std.Devn.              0.549388 
Skewness              -0.282549 
Excess Kurtosis       -0.763819 
Minimum               -2.048279 
Maximum                0.148184 
Skewness  Chi^2(1)      0.43909  [0.5076] 
Kurtosis  Chi^2(1)       0.8022  [0.3704] 
Normal-BS Chi^2(2)       1.2413  [0.5376] 
Normal-DH Chi^2(2)       1.3457  [0.5102] 
Goodness-of-fit results for Residual Log_NO_fat 
Prediction error variance (p.e.v)              0.047433 
Prediction error mean deviation (m.d)          0.040164 
Ratio p.e.v. / m.d in squares                  0.887888 
Coefficient of determination       R2         -0.005917 
... based on differences           RD2        -3.292629 
Information criterion of Akaike    AIC        -2.989614 
... of Schwartz (Bayes)            BIC        -2.944721 
 
Serial correlation statistics for Residual Log_NO_fat. 
Durbin-Watson test is 0.226385. 
Asymptotic deviation for correlation is 0.174078. 
 
 Lag  dF    SerCorr   BoxLjung    ProbChi2(dF) 
  1    0     0.5876 
  2    1     0.5052    21.9744    [ 0.0000] 
  3    2     0.3724    27.3134    [ 0.0000] 
  4    3     0.1785    28.5818    [ 0.0000] 
  5    4     0.0032    28.5822    [ 0.0000] 
  6    5    -0.0736    28.8140    [ 0.0000] 
  7    6    -0.0734    29.0532    [ 0.0001] 
  8    7    -0.0637    29.2405    [ 0.0001] 
 

� In the Results window of GiveWin, check the results of the normality test. 
Use the Doornik-Hansen statistic. The probability value [between square 
brackets] should be larger than 0.05. 

 

The normality test gives the sample size and the mean, standard deviation, skewness, kurtosis, 
minimum, and maximum of the residuals. The values of the skewness and kurtosis are tested 
against a χ2

(1) distribution, whereas the Bowman-Shenton statistic and the Doornik-Hansen 
statistic are tested against a χ2

(2) distribution. Koopman et al. (2000) note that the first three 
tests are only suitable when applied to very large samples. In this case, with a sample size of 
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34, we better use the Doornik-Hansen statistic only. The corresponding probability value is 
larger than 0.05 and therefore indicates normality of the residuals. The Doornik-Hansen statistic 
was also included in the summary of statistics (see step 1) and in the diagnostic test results 
table (Table 3.6.1). 
 

� Consider the goodness-of-fit results and check 
o whether the ratio between PEV and MD in squares is close to one; 
o whether the coefficient of determination, R2, is positive and close to 

one; 
o the value of the Akaike Information Criterion (AIC). 

 
The goodness-of-fit results include the prediction error variance (PEV), the prediction error 
mean deviation (MD), and the ratio of their squares computed as 2*PEV

2
/(π*MD

2
). The 

prediction error variance is the variance of the residuals in the steady state, i.e. when the 
recursive computation procedure, known as the “Kalman Filter” (Harvey, 1989; Durbin and 
Koopman, 2001), has converged. If the Kalman Filter does not converge, the finite PEV is used. 
The prediction error mean deviation is the mean deviation of the residuals in the steady state. In 
a correctly specified model, the ratio between the squared PEV and the squared MD should be 
close to one (Koopman et al., 2000). 
 
Furthermore, the goodness of fit can be evaluated by means of the coefficient of determination, 
which is a measure of the extent to which the variance of the observations is explained by the 
variance of the model predictions. Koopman et al. (2000) give three variants and define their 
area of application as in Table 3.6.2. They note that the coefficient of determination may 
become negative, which is an indication of a worse fit than in a simple random level model (or 
random level and slope model, or random level, slope and seasonal model). 
 

Coefficient of determination Appropriate to be applied to time series with … 
R

2 
no slope, no seasonal (stationary) 

R
2
D

 
slope, no seasonal 

R
2
S slope and seasonal 

Table 3.6.2: The coefficients of determination and their application area. Source: 
(Koopman et al., 2000). 

 
Finally, often used goodness-of-fit variables are the Akaike Information Criterion (AIC) and the 
Bayes Information Criterion (BIC). The smaller the AIC (or BIC), the better the model. These 
variables are computed as log(PEV)+c*m/T, where T is the sample size (34), m the number of 
parameters estimated (1), and c is 2 in the AIC and log(T) in the BIC. Note that the AIC is 
defined differently in Section 3.6.1.4 of the Methodology report, where it is based on the log-
likelihood. 
 

� Check on serial correlation by using the Box-Ljung statistic as computed for 
lags 1 to 8. 

 
The serial correlation statistics include the Durbin-Watson test, the asymptotic deviation for 
correlation, and the serial correlation for lags 1 to 8 with the corresponding value of the Box-
Ljung statistic and the corresponding probability value. These probability values should be 
larger than 0.05, which is the case for none of the eight lags considered. The Durbin-Watson 
and the Box-Ljung statistic were already described above, when dealing with the summary of 
statistics (see Step 1: Start of analysis and data load). 

 
Not all of these residual test results have to be checked always. We 
recommend to use the AIC (and/or BIC) to test the goodness-of-fit and the Box-
Ljung statistics to test serial independence. The Doornik-Hansen test for 
normality is already included in the summary of statistics (see Step 1: Start of 
analysis and data load). 
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Step 6: Test of auxiliary residuals 

 
The so-called auxiliary residuals are very helpful in finding possible outliers 
among the observations and structural breaks, e.g. caused by interventions. 
� Go to the STAMP window again and choose <Test, Auxiliary residuals 

graphics…>. 
� In the Auxiliary residuals graphics window select Irregular, Level residual, 

Index plot, Density, Histogram, Normal, QQ plot, Write normality tests, and 
Write values exceeding (3.5): 

 

 
 
� Click OK.  
The STAMP graphics window in GiveWin displays the auxiliary residuals of the 
irregular and their density function and normal probability plot: 
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The auxiliary residuals are standardised smoothed observation and state disturbances. The 
auxiliary residuals should be normally distributed with zero mean and unity standard deviation. 
The auxiliary residuals of the irregular help to detect possible outlier observations, the auxiliary 
residuals of level, slope, and seasonal help to identify structural breaks in the level, slope, and 
seasonal component, respectively. For example, if for a certain time point the auxiliary residual 
of the irregular is larger than 2 or smaller than -2, then this indicates a possible outlier 
observation. However, one should note that according to a normal distribution 5% of the 
auxiliary residuals are expected to lie outside the 95% confidence interval of ± 2. 
 

� Using the figures in the STAMP Graphics window, check whether the 
auxiliary residuals are approximately normally distributed. 

 
In the top figure, we see that none of the 34 standardised smoothed observation disturbances, 
i.e. unmistakably less than 5%, is larger than 2 or smaller than -2. The middle and the bottom 
figure show that the standardised smoothed observation disturbances are approximately 
normally distributed. 

 
Because the level was assumed deterministic in this model, no standardised smoothed level 
disturbances were estimated. 

 
� Use the menu <File, Save> or <Ctrl+S> to save these graphs and minimize 

the STAMP Graphics window. 
 
In the Results window of GiveWin the following auxiliary residual test results 
(normality, goodness of fit, serial correlation) have been added: 
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Normality test for IrrRes Log_NO_fat 
Sample Size     34 
Mean                   0.000000 
Std.Devn.              1.000000 
Skewness               0.103696 
Excess Kurtosis       -1.063128 
Minimum               -1.800584 
Maximum                1.822140 
Skewness  Chi^2(1)     0.060933  [0.8050] 
Kurtosis  Chi^2(1)       1.6012  [0.2057] 
Normal-BS Chi^2(2)       1.6621  [0.4356] 
Normal-DH Chi^2(2)        2.003  [0.3673] 
 

� Check the result of the Doornik-Hansen test for normality. 
 

The normality test for residuals were already described above. From the Doornik-Hansen test, 
we can conclude that the hypothesis of normally distributed auxiliary residuals is accepted; the 
probability value between square brackets is larger than 0.05. 
 
Note that in the Results window of GiveWin no values exceeding 3.5 have been 
added. 
 
Under the null hypothesis of normality, the probability of an auxiliary residual whose absolute 
value exceeds 3.5 is very small, about 0.0005. So, when this happens this is a very strong 
indication of an outlier. 
 

Step 7: Conclusion of analysis 

 
The residuals obtained with the analysis of the log of the annual Norwegian 
fatalities from 1970 to 2003 with the deterministic level model do not satisfy the 
important model assumptions of independence and homoscedasticity (see 
Table 3.6.1). It is therefore not the appropriate model for describing this series. 
We still discussed all the output that can be obtained from STAMP in this case, 
so as to make the reader familiar with the possible options, and for reasons of 
later reference. 
 

Step 8: Forecasting 

 
Because the deterministic level model is clearly not appropriate, it does not 
make much sense to compute forecasts with this model. 
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3.6.2.2  Stochastic level model 
 
The stochastic level model, which is also known as local level model, will be 
described more briefly than the deterministic level model, since much of the 
output from STAMP has already been discussed and explained in Section 
3.6.2.1. The focus will be on the new aspects and the comparison of the results 
of this model with the results of the deterministic model. 
 

Step 1: Start of analysis and data load 

 
If you just fitted the deterministic level model, GiveWin and STAMP have 
already been started and data is still loaded in the GiveWin window. If you start 
here or if you have closed the database, STAMP, or GiveWin after the previous 
exercise, please follow the instructions under step 1 of Section 3.6.2.1. 
 

Step 2: Model Formulation 

 
The stochastic (or: local) level model can be fitted in STAMP as follows: 
� Choose the menu <Model, Formulate...> in the STAMP window. 
� If needed, select the variable Log_NO_fat in the Data selection window and 

click the Add button. 
� Then click OK. 
� In the Select components window, choose a Stochastic Level, No slope, 

Irregular, and No seasonal, as follows: 
 

 
 
� Then click on the Finish button.  
 

Step 3: Model estimation and inspection of results 
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� In the Estimate Model window, select Maximum Likelihood. 
� Click OK.  
 
The model is estimated, and the following output appears in the GiveWin 
Results window: 
 
Method of estimation is Maximum likelihood 
The present sample is: 1970 to 2003 
 
 MaxLik initialising... 
it  1  f=   2.09171 e0=   0.52237 step=   1.00000 
it  2  f=   2.22405 e0=   0.00514 step=   1.00000 
 
 MaxLik iterating... 
it  2  f=   2.22407 df=   0.00000 e1=   0.00000 e2=   0.00000 step=   
0.00000 
 
Equation  2. 
 
Log_NO_fat = Level + Irregular 
 
Estimation report 
Model with  2 parameters ( 1 restrictions). 
Parameter estimation sample is 1970. 1 - 2003. 1. (T =   34). 
Log-likelihood kernel is 2.224067. 
Very strong convergence in   2 iterations. 
( likelihood cvg 0 
  gradient cvg   2.435829e-007 
  parameter cvg  9.737567e-012 ) 
 
Eq  2 : Diagnostic summary report. 
 
Estimation sample is 1970. 1 - 2003. 1. (T =   34, n =   33). 
Log-Likelihood is 75.6183 (-2 LogL = -151.237). 
Prediction error variance is 0.00989161 
 
Summary statistics 
              Log_NO_fat 
 Std.Error      0.099457 
 Normality        1.2746 
 H( 11)           1.7464 
 r( 1)          -0.12735 
 r( 7)          -0.15301 
 DW               2.0513 
 Q( 7, 6)         5.4955 
 R^2             0.79023 
 
Eq  2 : Estimated variances of disturbances. 
 
Component    Log_NO_fat (q-ratio)   
Irr           0.0032682 ( 0.6949)  
Lvl           0.0047030 ( 1.0000)  

 
� Check the results (sample period, log-likelihood, estimated variances of 

disturbances). 
 
The output first reports about the estimation process, which is subdivided into initialisation and 
further maximisation of the log-likelihood kernel f (see Koopman et al., 2000). In the 
deterministic level case, no iterations were needed. Now, however, two parameters have to be 
estimated: the observation disturbance variance and the level disturbance variance. 
Convergence is reached in two interations, and is very strong. This implies that all of the 
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convergence criteria used in the iterative process for parameter estimation are satisfied. These 
convergence criteria are likelihood, gradient, and parameter convergence (cvg). 
 
At convergence, the value of the log-likelihood function is 75.6 which is larger than in the 
deterministic level case (48.1). The prediction error variance (0.00989) is clearly smaller than for 
the deterministic level model (0.0474). These results indicate that the stochastic model yields a 
better fit than the deterministic model, albeit at the expense of having estimated one extra 
parameter (the variance of the level disturbances). 
 

� The STAMP output results concerning the summary statistics can again be 
condensed into the following table (see also Table 3.6.2 in the Methodology 
report): 

 

 Statistic Value Critical 5% 
valuea 

Assumption 
satisfied 

Independence Q(7,6) 5.50 12.59 + 
 r(1) -0.127 0.34 + 
 r(7) -0.153 0.34 + 
Homoscedasticity H(11) 1.75 3.47 + 
Normality N 1.27 5.99 + 

Table 3.6.3: Diagnostic test results for the stochastic level model applied to the log of 
Norwegian fatalities. aProbability that statistic exceeds critical value is 0.05. 

 
When we compare the results in Table 3.6.3 with those in Table 3.6.1, we see that also with 
respect to the diagnostic tests the stochastic level model performs better than the deterministic 
level model, because the present model satisfies all assumptions. 
 
Finally, the output gives the estimated disturbance variances. The irregular disturbance variance 
is about 30% smaller than the level disturbance variance. 

 
� In the STAMP window choose <Test, Further output…> in the menu. 
� Select Additional output, Get steady state, Anti-log analysis, and State and 

regression output. 
� Click OK. 
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The GiveWin Results window will display the following additional results: 
 
Eq  3 : Estimated standard deviations of disturbances. 
 
Component    Log_NO_fat (q-ratio)   
Irr            0.057168 ( 0.8336)  
Lvl            0.068578 ( 1.0000)  
 
Eq  3 : Estimated coefficients of final state vector. 
 
Variable      Coefficient      R.m.s.e.       t-value 
Lvl                5.6627      0.047118        120.18  [ 0.0000] 
 
Anti-log trend analysis 
Trend value at end of period is 287.92. 

 
The value of the level at the end of the period as presented by the anti-log trend analysis (288) 
is considerably smaller than the corresponding value in the deterministic model (377). 
 

Step 4: Graphics of model components 

 

� In the STAMP window choose menu <Test, Components graphics…>. 
Select Trend, Irregular and Smoothed. 

� Click OK.  
 
The STAMP Graphics window appears with graphs of the observed log-
transformed time series and the modelled trend and irregular. 
 
� Use the menu <File, Save> or <Ctrl+S> to save these graphs, e.g. as an 

Encapsulated Postcript file (*.eps). 
 
An eps. file can be loaded into a Word document. In the remainder of this 
manual we will do so instead of adding a screen print as in Section 3.6.2.1. 
Figure 3.6.1 shows the observed log-transformed time series and the stochastic 
level component (top), and the irregular component (bottom). 
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Figure 3.6.1: Observed log-transformed time series and the local level and irregular 
components for the log of Norwegian fatalities. 

 
In the top part of Figure 3.6.1, we see that the estimated trend is close to the (log-transformed) 
observations. Furthermore, we can see that the irregular shows a much more random pattern 
than in the deterministic case. 
 

� Minimize the STAMP Graphics window. 
 

Step 5: Test of model residuals 

 
� Go back to the STAMP window and choose <Test, Residuals graphics…>. 
� In the Residual graphics window select Residuals, Correlogram, with 8, 

Density, Histogram, Normal, QQ plot, and Write diagnostic tests.  
� Click OK.  
� Use the menu <File, Save> or <Ctrl+S> to save these graphs. 
 
Figure 3.6.2 shows the standardized residuals and their correlogram, density 
function, and normal probability plot as depicted by the STAMP graphics 
window in GiveWin. 
 
The top left graph of Figure 3.6.2 illustrates that none of the 34 residuals is outside the 95% 
confidence interval, which is very good. From the top right graph, we learn that for none of the 
eight lags considered the autocorrelation is outside the 95% confidence interval, which is 
defined by the boundaries -2/√T=-0.34 and +2/√T=0.34. This is an indication of absence of 
serial dependence. The bottom graphs show that the assumption of normality of the residuals is 
better satisfied than in the deterministic level model. 
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Figure 3.6.2: Residuals and residual tests for the stochastic level model applied to the 
log of Norwegian fatalities. 

 
In the Results window of GiveWin, the following residual test results have been 
added (only part of the results is printed): 
 
Goodness-of-fit results for Residual Log_NO_fat 
Information criterion of Akaike    AIC        -4.498421 
... of Schwartz (Bayes)            BIC        -4.408635 
 
Serial correlation statistics for Residual Log_NO_fat. 
Lag  dF    SerCorr   BoxLjung    ProbChi2(dF) 
  1    0    -0.1273 
  2    0    -0.0124 
  3    1     0.1095     1.0526    [ 0.3049] 
  4    2    -0.1054     1.4951    [ 0.4735] 
  5    3    -0.1382     2.2833    [ 0.5157] 
  6    4    -0.2253     4.4556    [ 0.3478] 
  7    5    -0.1530     5.4955    [ 0.3584] 
  8    6    -0.0478     5.6010    [ 0.4693] 

 
The goodness-of-fit results are undoubtedly better than in the deterministic case: in the 
stochastic model, the AIC is smaller (-4.50 instead of -3.00), just as the BIC (-4.41 instead of -
2.94). For all lags considered, the Box-Ljung test indicates that the most important assumption 
of independence is satisfied. 
 

Step 6: Test of auxiliary residuals 
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� Go to the STAMP window again and choose <Test, Auxiliary residuals 
graphics…>. 

� In the Auxiliary residuals graphics window select Irregular, Level residual, 
Index plot, Density, Histogram, Normal, QQ plot, Write normality tests, and 
Write values exceeding (3.5). 

� Click OK.  
� Use the menu <File, Save> or <Ctrl+S> to save these graphs. 
 
The STAMP graphics window in GiveWin displays the auxiliary residuals of the 
irregular and of the level component and their density function and normal 
probability plot: see Figure 3.6.3.  
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Figure 3.6.3: Auxiliary residuals and corresponding tests for the stochastic level model 
applied to the log of Norwegian fatalities. 
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The following output describes the auxiliary residual test results (normality, 
goodness of fit, serial correlation) as can be found in the Results window of 
GiveWin. 
 
Normality test for IrrRes Log_NO_fat 
Sample Size     34 
Mean                  -0.000312 
Std.Devn.              0.995882 
Skewness              -0.122988 
Excess Kurtosis       -0.405802 
Minimum               -2.234331 
Maximum                1.935788 
Skewness  Chi^2(1)     0.085714  [0.7697] 
Kurtosis  Chi^2(1)      0.23329  [0.6291] 
Normal-BS Chi^2(2)        0.319  [0.8526] 
Normal-DH Chi^2(2)      0.12802  [0.9380] 
 
Normality test for LvlRes Log_NO_fat 
Sample Size     34 
Mean                  -0.386541 
Std.Devn.              0.904762 
Skewness               0.485177 
Excess Kurtosis       -0.311715 
Minimum               -2.040092 
Maximum                1.633678 
Skewness  Chi^2(1)       1.3339  [0.2481] 
Kurtosis  Chi^2(1)      0.13765  [0.7106] 
Normal-BS Chi^2(2)       1.4716  [0.4791] 
Normal-DH Chi^2(2)       1.9093  [0.3849] 

 
Both Figure 3.6.3 and the auxiliary residual tests demonstrate that the auxiliary residuals of both 
the irregular and the level component satisfy the assumption of normality. 
 
Note that, just as in the deterministic case, in the Results window of GiveWin no 
values exceeding 3.5 have been added. 
 

Step 7: Conclusion of analysis 

 
The residuals obtained with the analysis of the log of the annual Norwegian 
fatalities from 1970 to 2003 with the local level model satisfy all the model 
assumptions of independence, homoscedasticity, and normality. It seems 
therefore to be the appropriate model for describing this series.  
 

Step 8: Forecasting 

 
Since the local level model provides an appropriate description of the log of the 
Norwegian fatalities series, as a final step in the analysis we will compute 
seven-year forecasts for this series. Furthermore, by performing an anti-log 
analysis the forecasts will be re-expressed in terms of the original count data. 
� Go to the STAMP window again and choose <Test, Forecasting…>.  
� In the Forecasting window select 7 as the number of forecasts, Trend, and 

Write forecasts Y: 
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� Click OK. 
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Figure 3.6.4: Seven-years forecasts (2004-2010) of the stochastic level model applied 
to the log of annual Norwegian fatalities, 1970-2003. 

 
The STAMP graphics window in GiveWin displays the log-transformed 
observations extended with the seven-years forecasts with 70% confidence 
interval (plus and minus one estimated standard deviation) in the top figure and 
the log-transformed observations and the extrapolated trend in the bottom 
figure: see Figure 3.6.4. 
 
� Use the menu <File, Save> or <Ctrl+S> to save these graphs, e.g. as an 

Encapsulated Postcript file (*.eps). 
 
The bottom figure clearly illustrates that the local level model always yields forecasts that are 
equal to the last value of the level component in the series. This is in complete agreement with 
the fact that we are dealing with a local level model. 
 
In the Results window of GiveWin the forecasts for the log-transformed time 
series have been added: 
 
Eq  2 : Forecasts for F-Log_NO_fat. 
 
Period     Forecast    R.m.s.e.      - Rmse      + Rmse 
2004. 1      5.6627     0.10095      5.5617      5.7636 
2005. 1      5.6627     0.12204      5.5406      5.7847 
2006. 1      5.6627     0.13999      5.5227      5.8027 
2007. 1      5.6627     0.15589      5.5068      5.8186 
2008. 1      5.6627     0.17030      5.4924      5.8330 
2009. 1      5.6627     0.18359      5.4791      5.8463 
2010. 1      5.6627     0.19598      5.4667      5.8587 
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The list of forecast results gives for each time point the forecast, its standard error, and the 
lower and upper bound of the 70% confidence interval. 
 
� Go to the STAMP window again and choose <Test, Forecasting…>. 
� In the Forecasting window select 7 as the number of forecasts, Trend, 

Modified anti-log analysis, and Write forecasts Y: 
 
 

 
 
� Click OK.  
 
The STAMP graphics window in GiveWin displays the original observations 
extended with the seven-years forecasts with 70% confidence interval (plus and 
minus one estimated standard deviation) in the top figure and the original 
observations and the extrapolated trend in the bottom figure: see Figure 3.6.5. 
 
� Use the menu <File, Save> or <Ctrl+S> to save these graphs. 
 
In the Results window of GiveWin the forecasts for the original observed time 
series have been added: 
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Eq  2 : Forecasts for E_F-Log_NO_fat. 
        Anti-log 
 
Period     Forecast    R.m.s.e.      - Rmse      + Rmse 
2004. 1      287.92      30.584      257.34      318.50 
2005. 1      287.92      37.373      250.55      325.29 
2006. 1      287.92      43.264      244.66      331.18 
2007. 1      287.92      48.570      239.35      336.49 
2008. 1      287.92      53.457      234.46      341.38 
2009. 1      287.92      58.023      229.90      345.94 
2010. 1      287.92      62.336      225.58      350.26 
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Figure 3.6.5: Anti-logged seven-year forecasts (2004-2010) of the stochastic level 
model applied to the log of annual Norwegian fatalities, 1970-2003. 
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3.6.3 Local linear trend model 

 
In this section, the slope component will be added to the local level model, so 
as to obtain the local linear trend model. The model will be applied to the 
number of fatalities as observed in Finland for the period 1970 through 2003. 
The theory on this model and the results of its application to the Finnish data 
are described in Section 3.6.2 of the Methodology report. This section explains 
how the model is built in STAMP. 
 
First, this section presents a step-by-step description of the analysis of the 
Finnish fatalities time series using a linear trend model with deterministic level 
and deterministic slope, also called the deterministic linear trend model. As in 
Section 3.6.2 of the Methodology report, we will show that this model, which is 
equivalent to a classical linear regression model, does not satisfy important 
model assumptions. Then, we describe the analysis with the linear trend model 
with stochastic level and stochastic slope, which is also known as the stochastic 
linear trend model or local linear trend model. The latter analysis also includes 
forecasting over seven years. 
 

3.6.3.1. Deterministic linear trend model 

 

Step 1: Start of analysis and data load 

 
First, we open GiveWin, load the data, and start STAMP.  
� If GiveWin is not yet open, then start GiveWin2.  
� If GiveWin is still open from the previous analysis, then close all results, 

data, and graphics windows in GiveWin by clicking on the cross in the top 
right corner of each window. 

� Use the menu <File, Open Data File…> to open the file 
“FinlandFatalities.in7”. 

 
The data file is loaded and displayed in a minimized window at the bottom of the 
GiveWin main window. To view the data file: 
� Click on the icon with the two overlapping boxes. 
 
The data file consists of two variables: the annual number of people killed in 
road traffic in Finland for the years 1970 through 2003 (“FI_fatalities”) and the 
logarithm of the latter time series (“Log_FI_fat”).  
� Minimize the data file window again and use the menu <Modules, Start 

Stamp> to start the STAMP program. 
 

Step 2: Model Formulation 

 
In this step, we define the deterministic linear trend model: 
� In STAMP, choose the menu <Model, Formulate>. 
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� In the Data selection window select the variable Log_FI_fat and click Add. 
� Then click OK. 
� In the Select components window, choose a Fixed level, Fixed slope, 

Irregular, and No seasonal: 
 

 
 
� Then click on the Finish button.  
 

Step 3: Model estimation and inspection of results 

 
� In the Estimate Model window, select Maximum Likelihood. 
� Click OK. 
 
The model is estimated, and the following output appears in the GiveWin 
Results window: 
 
Eq  1 : Diagnostic summary report. 
 
Estimation sample is 1970. 1 - 2003. 1. (T =   34, n =   32). 
Log-Likelihood is 55.7297 (-2 LogL = -111.459). 
Prediction error variance is 0.0205839 
 
Summary statistics 
              Log_FI_fat 
 Std.Error       0.14347 
 Normality        3.5468 
 H( 10)          0.63283 
 r( 1)           0.76735 
 r( 6)         -0.080113 
 DW              0.38632 
 Q( 6, 6)         49.093 
 Rd^2            -1.2238 
 
Eq  1 : Estimated variances of disturbances. 
 
Component    Log_FI_fat (q-ratio)   
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Irr            0.021360 ( 1.0000) 
 
� Check the results (sample period, log-likelihood, estimated variance of 

disturbances).  
� The output results concerning the summary statistics can again be 

condensed into the following table (see also Table 3.6.3 in the Methodology 
report): 

 

 Statistic Value Critical 5% 
valuea 

Assumption satisfied 

Independence Q(6,6) 49.1 12.59 - 

 r(1) 0.767 0.34 - 

 r(6) -0.0801 0.34 + 

Homoscedasticity H(10) 0.633 3.72 + 

Normality N 3.55 5.99 + 

Table 3.6.4: Diagnostic test results for the deterministic linear trend model applied to 
the log of Finnish fatalities. aProbability that statistic exceeds critical value is 0.05. 

 
Table 3.6.3 in the Methodology report gives the reciprocal value of the homoscedasticity test, 
because both the original value and its reciprocal should be smaller than the critical 5% value 
and, in this case, the reciprocal is larger than the original value. To stay close to the STAMP 
results, Table 3.6.4 does not present the reciprocal value of the homoscedasticity test statistic. 
Since the reciprocal of H(10) equals 1/H(10) = 1/0.633 = 1.580, and because this value is still 
smaller than the critical value of 3.72, the assumption of homoscedasticity is satisfied. However, 
the most important assumption of independence is clearly not satisfied in this analysis.  

 
� In the STAMP window choose <Test, Further output…> in the menu.  
� Select Additional output, Get steady state, Anti-log analysis, and State and 

regression output. 
� Click OK. 
 
In the GiveWin Results window, the following additional results are displayed: 
 
Eq  1 : Estimated standard deviations of disturbances. 
 
Component    Log_FI_fat (q-ratio)   
Irr             0.14615 ( 1.0000)  
 
Eq  1 : Estimated coefficients of final state vector. 
 
Variable      Coefficient      R.m.s.e.       t-value 
Lvl                5.9235      0.049044        120.78  [ 0.0000] 
Slp             -0.028733     0.0025548       -11.246  [ 0.0000] 
 
Anti-log trend analysis 
Trend value at end of period is 373.731. 
Growth rate at end of period is -0.0287328  ( -2.87328 % per “year”). 
 

From the estimated coefficients of the final state vector and their t-values, we can conclude that, 
in the final state, both the level and the negative slope component are significantly different from 
zero. In classical linear regression terms, we would say that both the intercept and the 
regression coefficient significantly deviate from zero. However, these tests are flawed because 
the residuals do not satisfy the assumption of independence (see Table 3.6.4). 
 
From the anti-log trend analysis, we can see that the estimated trend value at the end of the 
period is 374, with a reduction rate of almost 3% per year. 
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Step 4: Graphics of model components 

 
� In the STAMP window choose menu <Test, Components graphics…>. 

Select (Plot Y and …) Trend, Slope, Irregular and Smoothed. 
� Click OK.  
 
The STAMP Graphics window appears with graphs of the observed log-
transformed time series and the modelled trend, slope, and irregular (see Figure 
3.6.6). 
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Figure 3.6.6: Observed log-transformed time series and the deterministic linear trend 
(top graph), slope (middle graph), and irregular component (bottom graph) for the log of 
Finnish fatalities. 

 
In the top part of Figure 3.6.6, we see that the estimated trend is a a straight line; it is in fact a 
classical linear regression line. The middle graph displays the constant, negative slope. The 
bottom graph clearly indicates serial dependence in the observation disturbances. 

 
� Use the menu <File, Save> or <Ctrl+S> to save these graphs, e.g. as an 

Encapsulated Postcript file (*.eps). Minimize the STAMP Graphics window. 
 

Step 5: Test of model residuals 

 
� Go back to the STAMP window and choose <Test, Residuals graphics…>. 
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� In the Residual graphics window select Residuals, Correlogram, with 8, 
Density, Histogram, Normal, QQ plot, and Write diagnostic tests.  

� Click OK.  
� Use the menu <File, Save> or <Ctrl+S> to save these graphs and minimize 

the STAMP Graphics window. 
 
Figure 3.6.7 shows the standardized residuals and their correlogram, density 
function, and normal probability plot as depicted by the STAMP graphics 
window in GiveWin. 
 
The top left graph of Figure 3.6.7 shows that 1 out of the 34 residuals, i.e. 3%, lies outside the 
95% confidence interval; this is acceptable since we would expect about 1 out of 20 to fall 
outside this range. From the top right graph, we learn that for the first 3 of the 8 lags considered 
the autocorrelation is outside the 95% confidence interval, which is defined by the boundaries 
-2/√T=-0.34 and +2/√T=0.34. The bottom graphs show that the assumption of normality of the 
residuals is quite well satisfied, which confirms the normality test results in Table 3.6.4. 
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Figure 3.6.7: Residuals and residual tests for the deterministic linear trend model 
applied to the log of Finnish fatalities. 

 
In the Results window of GiveWin, the following residual test results can be 
found (only part of the results are printed below): 
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Goodness-of-fit results for Residual Log_FI_fat 
Information criterion of Akaike    AIC        -3.765598 
... of Schwartz (Bayes)            BIC        -3.675812 
 
Serial correlation statistics for Residual Log_FI_fat. 
Lag  dF    SerCorr   BoxLjung    ProbChi2(dF) 
  1    0     0.7673 
  2    1     0.6601    36.4701    [ 0.0000] 
  3    2     0.5001    45.8532    [ 0.0000] 
  4    3     0.2712    48.7118    [ 0.0000] 
  5    4     0.0528    48.8243    [ 0.0000] 
  6    5    -0.0801    49.0928    [ 0.0000] 
  7    6    -0.2189    51.1785    [ 0.0000] 
  8    7    -0.3337    56.2274    [ 0.0000] 

 
For all lags considered, the Box-Ljung test indicates that the most important assumption of 
independence is not satisfied, as we already noted on the basis of Figure 3.6.7 and Table 3.6.4. 
 

Step 6: Test of auxiliary residuals 

 
Because the residuals obtained with the deterministic linear trend model 
analysis does not satisfy the important model assumption of independence, we 
skipped this analysis step. 
 

Step 7: Conclusion of analysis 

 
The residuals obtained with the analysis of the log of the annual Finnish 
fatalities from 1970 to 2003 with the deterministic linear trend model do not 
satisfy the model assumption of independence. Therefore, it is not the 
appropriate model for describing this time series. This also means that a 
classical linear regression model (without explanatory variables) would not be 
able to appropriately describe this series. 
 

Step 8: Forecasting 

 
Because the deterministic linear trend model is not appropriate, it does not 
make much sense to compute forecasts with this model. 
 

Step 9: Exercise 

 
Apply a deterministic linear trend model to the dataset which was used in the 
part of the manual dedicated to classical linear regression (Section 3.2.1). Use 
the annual averages and compare the results with the corresponding results in 
Section 3.2.1. 
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3.6.3.2. Stochastic linear trend model 

 

Step 1: Start of analysis and data load 

 
If you just fitted the deterministic linear trend model, GiveWin and STAMP have 
already been started and data is still loaded in the GiveWin window. If you start 
here or if you have closed the database, STAMP, or GiveWin after the previous 
exercise, please follow the instructions under step 1 of Section 3.6.3.1. 
 

Step 2: Model Formulation 

 
The stochastic (or: local) linear trend model can be fitted in STAMP as follows: 
� Choose the menu <Model, Formulate...>. 
� If needed, select the variable Log_FI_fat in the Data selection window and 

click the Add button. 
� Then click OK. 
� In the Select components window, choose a Stochastic Level, Stochastic 

slope, Irregular, and No seasonal: 
 

 
 
� Then click on the Finish button.  
 

Step 3: Model estimation and inspection of results 

 
� In the Estimate Model window, select Maximum Likelihood. 
� Click OK.  
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The model is estimated, and the following output appears in the GiveWin 
Results window: 
 
Equation  1. 
 
Log_FI_fat = Trend + Irregular 
 
Estimation report 
Model with  3 parameters ( 2 restrictions). 
Parameter estimation sample is 1970. 1 - 2003. 1. (T =   34). 
Log-likelihood kernel is 2.121946. 
Very strong convergence in  12 iterations. 
( likelihood cvg 3.160187e-014 
  gradient cvg   2.331024e-007 
  parameter cvg  1.878562e-008 ) 
 
Eq  1 : Diagnostic summary report. 
 
Estimation sample is 1970. 1 - 2003. 1. (T =   34, n =   32). 
Log-Likelihood is 72.1462 (-2 LogL = -144.292). 
Prediction error variance is 0.0100779 
 
Summary statistics 
              Log_FI_fat 
 Std.Error       0.10039 
 Normality       0.39376 
 H( 10)          0.50989 
 r( 1)         -0.028431 
 r( 8)          -0.15533 
 DW               2.0137 
 Q( 8, 6)         5.8640 
 Rd^2          -0.088796 
 
Eq  1 : Estimated variances of disturbances. 
 
Component    Log_FI_fat (q-ratio)   
Irr           0.0032008 ( 1.0000)  
Lvl             0.00000 ( 0.0000)  
Slp           0.0015332 ( 0.4790) 

 
From the estimated variances of disturbances, we see that the variance 
corresponding to the level component (Lvl) is (almost) equal to zero, meaning 
that this component does vary over time, and that we may as well treat it 
deterministically. Therefore, we repeat the analysis (steps 2 and 3) with a 
deterministic instead of a stochastic level component (select Fixed level in the 
STAMP Select components window). This yields the following output in the 
GiveWin results window: 
 
Equation  2. 
 
Log_FI_fat = Trend + Irregular 
 
Estimation report 
Model with  2 parameters ( 1 restrictions). 
Parameter estimation sample is 1970. 1 - 2003. 1. (T =   34). 
Log-likelihood kernel is 2.121946. 
Very strong convergence in   2 iterations. 
( likelihood cvg 1.21594e-013 
  gradient cvg   1.811884e-008 
  parameter cvg  4.042691e-008 ) 
 
Eq  2 : Diagnostic summary report. 
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Estimation sample is 1970. 1 - 2003. 1. (T =   34, n =   32). 
Log-Likelihood is 72.1462 (-2 LogL = -144.292). 
Prediction error variance is 0.0100779 
 
Summary statistics 
              Log_FI_fat 
 Std.Error       0.10039 
 Normality       0.39376 
 H( 10)          0.50989 
 r( 1)         -0.028427 
 r( 7)         -0.059707 
 DW               2.0137 
 Q( 7, 6)         4.7703 
 Rd^2          -0.088796 
 
Eq  2 : Estimated variances of disturbances. 
 
Component    Log_FI_fat (q-ratio)   
Irr           0.0032008 ( 1.0000)  
Slp           0.0015331 ( 0.4790) 

 
� Check the results (sample period, log-likelihood, estimated variance of 

disturbances).  
 
The estimation report tells that there was very strong convergence in 2 iterations. The estimated 
variances of both the irregular and the slope component are unequal to zero. The diagnostic 
summary report shows that the value of the log-likelihood function is 72.1, which is larger than in 
the deterministic linear trend case (55.7). The prediction error variance (0.0101) is clearly 
smaller than for the deterministic level model (0.0206). These results indicate that the 
deterministic level and stochastic slope model, also known as the “smooth trend model”, is 
performing better than the fully deterministic model. 
 

� The STAMP output results concerning the summary statistics can again be 
condensed into the following table (see also Table 3.6.4 in Section 3.6.2 of 
the Methodology report): 

 

 Statistic Value Critical 5% 
valuea 

Assumption satisfied 

Independence Q(7,6) 4.77 12.59 + 
 r(1) -0.0284 0.34 + 
 r(7) -0.0597 0.34 + 
Homoscedasticity H(10) 0.510 3.72 + 
Normality N 0.394 5.99 + 

Table 3.6.5: Diagnostic test results for the deterministic level and stochastic slope 
model applied to the log of Finnish fatalities. aProbability that statistic exceeds critical 
value is 0.05. 

 
When we compare the results in Table 3.6.5 with those in Table 3.6.4 of the manual, we see 
that also with respect to the diagnostic tests the deterministic level and stochastic slope model 
is better than the deterministic linear trend model. The stochastic model satisfies all model 
assumptions, whereas the deteministic model did not satisfy the most important assumption, i.e. 
the assumption of independence. 
 

� In the STAMP window choose <Test, Further output…> in the menu. 
� Select Additional output, Get steady state, Anti-log analysis, and State and 

regression output. 
� Click OK. 
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The GiveWin Results window will display the following additional results: 
 
Eq  2 : Estimated standard deviations of disturbances. 
 
Component    Log_FI_fat (q-ratio)   
Irr            0.056576 ( 1.0000)  
Slp            0.039155 ( 0.6921)  
 
Eq  2 : Estimated coefficients of final state vector. 
 
Variable      Coefficient      R.m.s.e.       t-value 
Lvl                5.9689      0.047371           126  [ 0.0000] 
Slp             -0.035603      0.053297      -0.66802  [ 0.5089] 

 
Anti-log trend analysis 
Trend value at end of period is 391.056. 
Growth rate at end of period is -0.0356035  ( -3.56035 % per “year”). 

 
From the estimated coefficients of the final state vector and their t-values, we can conclude that, 
in the final state, the level component is significantly different from zero whereas the negative 
slope component is not.  
 
The trend value at the end of the period as presented by the anti-log trend analysis (391) is 
larger than the corresponding value in the deterministic model (374).  
 

Step 4: Graphics of model components 

 

� In the STAMP window choose menu <Test, Components graphics…>. 
Select Trend, Slope, Irregular and Smoothed. 

� Click OK.  
 
The STAMP Graphics window appears with graphs of the observed log-
transformed time series and the modelled trend, slope, and irregular (see Figure 
3.6.8). 
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Figure 3.6.8: Observed log-transformed time series and the trend of the deterministic 
level stochastic slope model (top graph), slope component (middle graph), and 
irregular component (bottom graph) for the log of Finnish fatalities. 

 
In the middle graph of Figure 3.6.8, we see that a negative slope component corresponds to a 
decreasing trend, whereas a positive slope component corresponds to an increasing trend. The 
slope is negative in 1971-1980, (almost) zero in 1981-1983, positive in 1984-1988, negative in 
1989-1996, and (almost) negative or slightly negative in 1997-2003. Note that the negative 
slope component in the final state was found to be insignificantly different from zero (see step 
3). 

 
� Use the menu <File, Save> or <Ctrl+S> to save these graphs, e.g. as an 

Encapsulated Postcript file (*.eps). Minimize the STAMP Graphics window. 
 

Step 5: Test of model residuals 

 
� Go back to the STAMP window and choose <Test, Residuals graphics…>. 
� In the Residual graphics window, select Residuals, Correlogram, with 8, 

Density, Histogram, Normal, QQ plot, and Write diagnostic tests.  
� Click OK. 
 
Figure 3.6.9 shows the standardized residuals and their correlogram, density 
function, and normal probability plot as depicted by the STAMP graphics 
window in GiveWin. 
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Figure 3.6.9: Residuals and residual tests for the deterministic level stochastic slope 
model applied to the log of Finnish fatalities. 

 
The top left graph of Figure 3.6.9 shows that 1 out of the 34 residuals, i.e. 3%, lies outside the 
95% confidence interval; this is acceptable since we would expect about 1 out of 20 to fall 
outside this range. From the top right graph, we learn that for none of the 38 lags considered the 
autocorrelation is outside the 95% confidence interval, which is defined by the boundaries -
2/√T=-0.34 and +2/√T=0.34. The bottom graphs show that the assumption of normality of the 
residuals is quite well satisfied, which confirms the normality test results in Table 3.6.5. 
 

� Use the menu <File, Save> or <Ctrl+S> to save these graphs and minimize 
the STAMP Graphics window. 

 

In the Results window of GiveWin, the following residual test results can be 
found (only part of the results are printed below): 
 
Goodness-of-fit results for Residual Log_FI_fat 
Information criterion of Akaike    AIC        -4.420941 
... of Schwartz (Bayes)            BIC        -4.286262 
 
Serial correlation statistics for Residual Log_FI_fat. 
Lag  dF    SerCorr   BoxLjung    ProbChi2(dF) 
  1    0    -0.0284 
  2    0     0.0631 
  3    1     0.1610     1.1450    [ 0.2846] 
  4    2    -0.0937     1.4865    [ 0.4756] 
  5    3    -0.2734     4.4980    [ 0.2125] 
  6    4    -0.0529     4.6151    [ 0.3291] 
  7    5    -0.0597     4.7703    [ 0.4446] 
  8    6    -0.1553     5.8640    [ 0.4386] 

 



Chapter 3 

 

The goodness-of-fit is clearly better than in the fully deterministic case: the AIC is smaller (-4.42 
instead of -3.77) as well as the BIC (-4.29 instead of -3.68). 
 
For all lags considered, the Box-Ljung test indicates that the most important model assumption, 
i.e. independence, is satisfied, as we already noted on the basis of Figure 3.6.9 and in Table 
3.6.5. 

 

Step 6: Test of auxiliary residuals 

 
� Go to the STAMP window again and choose <Test, Auxiliary residuals 

graphics…>. 
� In the Auxiliary residuals graphics window select Irregular, Level residual, 

Index plot, Density, Histogram, Normal, QQ plot, Write normality tests, and 
Write values exceeding (3.5). 

� Click OK.  
� Use the menu <File, Save> or <Ctrl+S> to save these graphs. 
 
The STAMP graphics window in GiveWin displays the auxiliary residuals of the 
irregular and of the level component and their density function and normal 
probability plot: see Figure 3.6.10.  
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Figure 3.6.10: Auxiliary residuals and corresponding tests for the deterministic level 
stochastic slope model applied to the log of Finnish fatalities. 

The following output describes the auxiliary residual test results for normality as 
can be found in the Results window of GiveWin. 
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Normality test for IrrRes Log_FI_fat 
Sample Size     34 
Mean                  -0.034110 
Std.Devn.              1.028845 
Skewness              -0.165816 
Excess Kurtosis       -1.021443 
Minimum               -2.007568 
Maximum                1.881536 
Skewness  Chi^2(1)      0.15581  [0.6930] 
Kurtosis  Chi^2(1)       1.4781  [0.2241] 
Normal-BS Chi^2(2)       1.6339  [0.4418] 
Normal-DH Chi^2(2)       2.0182  [0.3645] 
 
Normality test for IrrRes Log_FI_fat 
Sample Size     34 
Mean                  -0.034110 
Std.Devn.              1.028845 
Skewness              -0.165816 
Excess Kurtosis       -1.021443 
Minimum               -2.007568 
Maximum                1.881536 
Skewness  Chi^2(1)      0.15581  [0.6930] 
Kurtosis  Chi^2(1)       1.4781  [0.2241] 
Normal-BS Chi^2(2)       1.6339  [0.4418] 
Normal-DH Chi^2(2)       2.0182  [0.3645] 

 
Figure 3.6.10 and the auxiliary residual tests demonstrate that the auxiliary residuals of both the 
irregular and the slope component satisfy the assumption of normality. Note that none of the 
auxiliary residuals of the irregular (top left graph in Figure 3.6.10) is larger than 2 or smaller than 
-2, whereas only one of the auxiliary residuals of the slope component (middle left graph) 
slightly exceeds these bounds. So, there is no indication of outlier observations or structural 
breaks in the slope component. 
 

Step 7: Conclusion of analysis 

 
The residuals obtained with the analysis of the log of the annual Finnish 
fatalities from 1970 to 2003 with the deterministic level and stochastic slope 
model (or: smooth trend model) satisfy all the model assumptions of 
independence, homoscedasticity, and normality. Therefore, it is an appropriate 
model for describing this series. 
 

Step 8: Forecasting 

 
Since the deterministic level stochastic slope model provides an appropriate 
description of the log of the Finnish fatalities series, as a final step in the 
analysis we will compute seven-year forecasts for this series. By performing an 
anti-log analysis the forecasts will be re-expressed in terms of the original count 
data. The forecasts are made according to the instructions in step 8 of the 
analysis of the local level model (Section 3.6.2.2). 
 
� Go to the STAMP window again and choose <Test, Forecasting…>.  
� In the Forecasting window select 7 as the number of forecasts, Trend, 

Modified anti-log analysis, and Write forecasts Y. 
� Click OK.  
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The STAMP graphics window in GiveWin displays the original observations 
extended with the seven-years forecasts with 70% confidence interval (i.e., plus 
and minus one estimated standard deviation) at the top, and the original 
observations and the extrapolated trend at the bottom of Figure 3.6.11. 
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Figure 3.6.11: Anti-logged seven-year forecasts (2004-2010) of the deterministic level 
stochastic slope model applied to the log of annual Finnish fatalities, 1970-2003. 

 
The bottom figure illustrates that a linear trend model always yields forecasts by extending the 
last value of the trend (i.e., level plus slope) in the series. This is in complete agreement with the 
fact that we are dealing with a linear trend model. 
 
� Use the menu <File, Save> or <Ctrl+S> to save these graphs, e.g. as an 

Encapsulated Postcript file (*.eps). 
 
In the Results window of GiveWin the forecasts for the original observed time 
series have been added: 
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Eq  1 : Forecasts for E_F-Log_FI_fat. 
        Anti-log 
 
Period     Forecast    R.m.s.e.      - Rmse      + Rmse 
2004. 1      377.38      41.142      336.24      418.52 
2005. 1      364.18      59.896      304.28      424.08 
2006. 1      351.44      84.011      267.43      435.45 
2007. 1      339.15      112.49      226.66      451.64 
2008. 1      327.29      145.04      182.25      472.32 
2009. 1      315.84      181.72      134.11      497.56 
2010. 1      304.79      222.82      81.973      527.61 

 
The list of forecast results gives for each time point the forecast, its standard error, and the 
lower and upper bound of the 70% confidence interval. 
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3.6.4 Local linear trend plus seasonal model 

 
In this section, the seasonal component will be added to the local linear trend 
model, so as to obtain the local linear trend plus seasonal model. The model will 
be applied to the monthly number of drivers killed or seriously injured (KSI) as 
observed in the UK for the period January 1969 through December 1984. 
Modelling a seasonal component only makes sense when we are dealing with 
seasonal (monthly, quarterly, weekly, etc.) time series data, and this type of 
component was therefore not considered in the analysis of the annual data 
discussed in Section 3.6.2 and 3.6.3. In addition to the theory on this model and 
the results of its application to the UK data, as presented in Section 3.6.3 of the 
Methodology report, this section explains how the model is built in STAMP and 
how the results can be interpreted. 
 
This section presents a step-by-step description of the analysis of the UK 
drivers KSI time series using a local linear trend plus seasonal model. Contrary 
to the setup of Sections 3.6.2 and 3.6.3, in this section all components will be 
assumed stochastic from the start. As such, this analysis example follows the 
recommended way of analysing time series data by state space techniques 
(see Section 3.6.7). 
 

Step 1: Start of analysis and data load 

 
First, we open GiveWin, load the data, and start STAMP.  
� If GiveWin is not yet open, then start GiveWin2.  
� If GiveWin is already open from a previous exercise, then close all results, 

data, and graphics windows in GiveWin by clicking on the icon with the cross 
in the top right corner of each window. 

� Use the menu <File, Open Data File…> to open the file “UKdriversKSI.in7”. 
 
The data file is loaded and displayed in a minimized window at the bottom of the 
GiveWin main window. To view the data file: 
� Click on the icon with the two overlapping boxes. 
 
The data file consists of four variables: the monthly number of drivers KSI in the 
UK for the months January 1969 through December 1984 (UKdriversKSI), the 
petrol price in the UK in the same months (PetrolPrice), and the logarithm of the 
same time series (Log_UKdriversKSI  and Log_PetrolPrice). The variable 
PetrolPrice will be used in Section 3.6.6.  
 
� Minimize the data file window again and use the menu <Modules, Start 

Stamp> to start the STAMP program. 
 

Step 2: Model Formulation 

 
In this step, we define the local linear trend plus seasonal model: 
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� In STAMP, choose the menu <Model, Formulate...>. 
� In the Data selection window select the variable Log_UKdriversKSI. 
� Then click OK. 
� In the Select components window, choose a Stochastic Level, Stochastic 

slope, Irregular, and Dummy seasonal: 
 

 
 
 
� Then click on the Finish button.  
 

Step 3: Model estimation and inspection of results 

 
� In the Estimate Model window, select Maximum Likelihood. 
� Click OK.  
 
The model is estimated, and the following output appears in the GiveWin 
Results window: 
 
Equation  4. 
 
Log_UKdriversKSI = Trend + Dummy seasonal + Irregular 
 
Estimation report 
Model with  4 parameters ( 3 restrictions). 
Parameter estimation sample is 1969. 1 - 1984.12. (T =  192). 
Log-likelihood kernel is 2.279365. 
Very strong convergence in  11 iterations. 
( likelihood cvg 7.253531e-013 
  gradient cvg   7.576162e-008 
  parameter cvg  4.127312e-006 ) 
 
Eq  4 : Diagnostic summary report. 
 
Estimation sample is 1969. 1 - 1984.12. (T =  192, n =  179). 
Log-Likelihood is 437.638 (-2 LogL = -875.276). 
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Prediction error variance is 0.00556772 
 
Summary statistics 
            Log_UKdriver 
 Std.Error      0.074617 
 Normality        3.7108 
 H( 59)           1.0905 
 r( 1)          0.026288 
 r(12)          0.029382 
 DW               1.9311 
 Q(12, 9)         12.378 
 Rs^2            0.23046 
 
Eq  4 : Estimated variances of disturbances. 
 
Component   Log_UKdriversKSI (q-ratio)   
Irr           0.0034678 ( 1.0000)  
Lvl           0.0010009 ( 0.2886)  
Slp             0.00000 ( 0.0000)  
Sea             0.00000 ( 0.0000) 

 
Inspecting the estimated variances of the disturbances, we see that the 
variances corresponding to the slope component (Slp) and the seasonal 
component (Sea) are (almost) equal to zero. Therefore, we repeat the analysis 
(steps 2 and 3) with a deterministic slope and seasonal component (by 
choosing Stochastic level,  Fixed slope, and Fixed seasonal in the STAMP 
Select components window). This yields the following output in the GiveWin 
results window: 
 
Equation  5. 
 
Log_UKdriversKSI = Trend + Fixed seasonal + Irregular 
 
Estimation report 
Model with  2 parameters ( 1 restrictions). 
Parameter estimation sample is 1969. 1 - 1984.12. (T =  192). 
Log-likelihood kernel is 2.279365. 
Very strong convergence in   3 iterations. 
( likelihood cvg 1.23912e-013 
  gradient cvg   3.566036e-008 
  parameter cvg  3.127122e-007 ) 
 
Eq  5 : Diagnostic summary report. 
Estimation sample is 1969. 1 - 1984.12. (T =  192, n =  190). 
Log-Likelihood is 437.638 (-2 LogL = -875.276). 
Prediction error variance is 0.00550388 
 
Summary statistics 
            Log_UKdriver 
 Std.Error      0.074188 
 Normality        2.9938 
 H( 63)           1.0297 
 r( 1)          0.029490 
 r(12)        -0.0070854 
 DW               1.9343 
 Q(12,11)         12.196 
 Rs^2            0.23928 
 
Eq  5 : Estimated variances of disturbances. 
 
Component   Log_UKdriversKSI (q-ratio)   
Irr           0.0034678 ( 1.0000)  
Lvl           0.0010009 ( 0.2886) 
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� Check the results (sample period, log-likelihood, estimated variance of 
disturbances).  

 
The estimation report tells that there was very strong convergence in three iterations. The 
diagnostic summary report shows that the number of observations is 192, that the value of the 
log-likelihood function at convergence is 437, and that the prediction error variance is 0.00550. 
The estimated variance of the level disturbances is unequal to zero. 
 

� In the STAMP window choose <Test, Further output…> in the menu. 
� Select Additional output, Get steady state, Anti-log analysis, and State and 

regression output. 
� Click OK. 
 
The GiveWin Results window will display the following additional results: 
 
Eq  5 : Estimated standard deviations of disturbances. 
 
Component   Log_UKdriversKSI (q-ratio)   
Irr            0.058888 ( 1.0000)  
Lvl            0.031637 ( 0.5372)  
 
Eq  5 : Estimated coefficients of final state vector. 
 
Variable      Coefficient      R.m.s.e.       t-value 
Lvl                7.2404      0.038792        186.65  [ 0.0000] 
Slp           -0.00090532     0.0023076      -0.39233  [ 0.6953] 
Sea_ 1           0.017176      0.016254        1.0567  [ 0.2920] 
Sea_ 2           -0.10933      0.016219       -6.7409  [ 0.0000] 
Sea_ 3          -0.070091      0.016192       -4.3288  [ 0.0000] 
Sea_ 4           -0.14686      0.016171       -9.0817  [ 0.0000] 
Sea_ 5          -0.055472      0.016157       -3.4333  [ 0.0007] 
Sea_ 6          -0.092507      0.016150       -5.7279  [ 0.0000] 
Sea_ 7          -0.043175      0.016150       -2.6734  [ 0.0082] 
Sea_ 8          -0.032024      0.016157        -1.982  [ 0.0489] 
Sea_ 9          0.0058909      0.016171       0.36429  [ 0.7160] 
Sea_10           0.086848      0.016192        5.3637  [ 0.0000] 
Sea_11            0.19221      0.016219        11.851  [ 0.0000] 
 
Anti-log trend analysis 
Trend value at end of period is 1394.63. 
Growth rate at end of period is -0.000905317  ( -1.08638 % per 
“year”). 
 
From the estimated coefficients of the final state vector and their t-values, we can conclude that 
the (constant) value of -0.00090532 for the slope component does not significantly deviate from 
zero. The same applies to the values for the first and ninth estimates of the seasonal 
component (corresponding to the months of January and September).  
 

Because the deterministic slope component is not significantly different from 
zero, we drop the slope component from the model and repeat the analysis 
(steps 2 and 3) with a stochastic level deterministic seasonal model (by 
selecting Stochastic level and Fixed seasonal in the STAMP Select components 
window). This yields the following output in the GiveWin results window: 
 
Equation  6. 
 
Log_UKdriversKSI = Level + Fixed seasonal + Irregular 
 
Estimation report 
Model with  2 parameters ( 1 restrictions). 
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Parameter estimation sample is 1969. 1 - 1984.12. (T =  192). 
Log-likelihood kernel is 2.313251. 
Very strong convergence in   2 iterations. 
( likelihood cvg 1.343833e-015 
  gradient cvg   2.082778e-008 
  parameter cvg  3.620022e-009 ) 
 
Eq  6 : Diagnostic summary report. 
 
Estimation sample is 1969. 1 - 1984.12. (T =  192, n =  191). 
Log-Likelihood is 444.144 (-2 LogL = -888.289). 
Prediction error variance is 0.00550316 
 
Summary statistics 
            Log_UKdriver 
 Std.Error      0.074183 
 Normality        3.2218 
 H( 63)           1.0686 
 r( 1)          0.041087 
 r(12)       -0.00017919 
 DW               1.9155 
 Q(12,11)         12.000 
 Rs^2            0.23938 
 
Eq  6 : Estimated variances of disturbances. 
 
Component   Log_UKdriversKSI (q-ratio)   
Irr           0.0035140 ( 1.0000)  
Lvl          0.00094564 ( 0.2691) 

 

� Check the results (sample period, log-likelihood, estimated variance of 
disturbances).  

 
The estimation report tells that there was very strong convergence in two iterations. The 
estimated variance of the level disturbances is unequal to zero, meaning that the level 
component should be treated stochastically. The diagnostic summary report shows that the 
value of the log-likelihood function at convergence is 444, which is a somewhat larger value 
than in the stochastic level and deterministic slope and seasonal model (437). 
 

� In the STAMP window choose <Test, Further output…> in the menu. 
� Select Additional output, Get steady state, Anti-log analysis, and State and 

regression output. 
� Click OK. 
 
The GiveWin Results window will display the following additional results: 
 
Eq  6 : Estimated standard deviations of disturbances. 
 
Component   Log_UKdriversKSI (q-ratio)   
Irr            0.059279 ( 1.0000)  
Lvl            0.030751 ( 0.5188)  
 
Eq  6 : Estimated coefficients of final state vector. 
 
Variable      Coefficient      R.m.s.e.       t-value 
Lvl                7.2414      0.038351        188.82  [ 0.0000] 
Sea_ 1           0.017272      0.016225        1.0646  [ 0.2884] 
Sea_ 2           -0.10925      0.016192       -6.7474  [ 0.0000] 
Sea_ 3          -0.070030      0.016165       -4.3321  [ 0.0000] 
Sea_ 4           -0.14682      0.016146       -9.0933  [ 0.0000] 
Sea_ 5          -0.055446      0.016132       -3.4369  [ 0.0007] 
Sea_ 6          -0.092499      0.016126       -5.7361  [ 0.0000] 
Sea_ 7          -0.043184      0.016126        -2.678  [ 0.0081] 
Sea_ 8          -0.032050      0.016132       -1.9867  [ 0.0484] 
Sea_ 9          0.0058471      0.016146       0.36215  [ 0.7176] 
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Sea_10           0.086786      0.016165        5.3686  [ 0.0000] 
Sea_11            0.19213      0.016192        11.866  [ 0.0000] 
 
Anti-log trend analysis 
Trend value at end of period is 1396.04. 

 
The values for the first and ninth estimates of the seasonal component (corresponding to the 
months of January and September) do not significantly deviate from zero. At the end of the 
period, the trend value as presented by the anti-log trend analysis is 1396. 
 

� The STAMP output results concerning the summary statistics can be 
condensed into the following table (see also Table 3.6.6 in the Methodology 
report): 

 
 

 Statistic Value Critical 5% 
valuea 

Assumption 
satisfied 

Independence Q(12,11) 12.0 19.68 + 
 r(1) 0.0411 0.14 + 
 r(12) -0.00018 0.14 + 
Homoscedasticity H(63) 1.07 1.65 + 
Normality N 3.22 5.99 + 
 

Table 3.6.6: Diagnostic test results for the stochastic level and deterministic seasonal 
model applied to the log of the number of UK drivers KSI. aProbability that statistic 
exceeds critical value is 0.05. 

 
From Table 3.6.6, we can conclude that the stochastic level and deterministic 
seasonal model satisfies all model assumptions. 
 

Step 4: Graphics of model components 

 

� In the STAMP window choose menu <Test, Components graphics…>. 
Select Trend, Seasonal, Irregular, and Smoothed. 

� Click OK.  
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Figure 3.6.12: Observed log-transformed time series and the trend of the stochastic 
level and deterministic seasonal model (top graph), seasonal component (middle 
graph), and irregular component (bottom graph) for the log of UK drivers KSI. 

 
The STAMP Graphics window appears with graphs of the observed log-
transformed time series and the modelled trend, seasonal, and irregular (see 
Figure 3.6.12). 
 
The seasonal component is close to zero for the months January and September, is negative 
for February to August, and is positive for October to December. 

 
� Use the menu <File, Save> or <Ctrl+S> to save these graphs, e.g. as an 

Encapsulated Postcript file (*.eps). Minimize the STAMP Graphics window. 
 

Step 5: Test of model residuals 

 
� Go back to the STAMP window and choose <Test, Residuals graphics…>. 
� In the Residual graphics window select Residuals, Correlogram, with 14, 

Density, Histogram, Normal, QQ plot, and Write diagnostic tests.  
� Click OK.  
 
Figure 3.6.13 shows the standardized residuals and their correlogram, density 
function, and normal probability plot as depicted by the STAMP graphics 
window in GiveWin. 
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Figure 3.6.13: Residuals and residual tests for the stochastic level deterministic 
seasonal model applied to the log of UK drivers KSI. 

 
The top left graph of Figure 3.6.13 shows that only five out of the 192 residuals exceed the 95% 
confidence limits. Still, the residual corresponding to February 1983 is very extreme: -3.73. 
Under the assumption of a normal distribution with zero mean and unit standard deviation, the 
probability of a value smaller than -3.73 is 0.01%! From the top right graph, we learn that for 1 
out of the 14 lags considered the autocorrelation is (just) outside the 95% confidence interval, 
which is defined by the boundaries -2/√T=-0.14 and +2/√T=0.14. The bottom graphs show that 
the assumption of normality of the residuals is satisfied, which confirms the normality test result 
displayed in Table 3.6.6. 

 
� Use the menu <File, Save> or <Ctrl+S> to save the graphs and minimize the 

STAMP Graphics window. 
 
In the Results window of GiveWin, the following residual test results can be 
found (only part of the results are printed below): 
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Goodness-of-fit results for Residual Log_UKdriversKSI 
Information criterion of Akaike    AIC        -5.067016 
... of Schwartz (Bayes)            BIC        -4.846457 
 
Serial correlation statistics for Residual Log_UKdriversKSI. 
Lag  dF    SerCorr   BoxLjung    ProbChi2(dF) 
  1    0     0.0411 
  2    0     0.0332 
  3    1    -0.0618     1.2906    [ 0.2559] 
  4    2    -0.1199     4.1225    [ 0.1273] 
  5    3     0.0452     4.5278    [ 0.2098] 
  6    4    -0.0812     5.8412    [ 0.2113] 
  7    5    -0.0654     6.6993    [ 0.2440] 
  8    6    -0.1413    10.7213    [ 0.0974] 
  9    7     0.0105    10.7438    [ 0.1502] 
 10    8    -0.0667    11.6512    [ 0.1675] 
 11    9     0.0413    12.0002    [ 0.2133] 
 12   10    -0.0002    12.0002    [ 0.2850] 
 13   11     0.1043    14.2549    [ 0.2192] 
 14   12     0.0364    14.5314    [ 0.2681] 

 

The value of the AIC is -5.07. Furthermore, the BoxLjung test statistic for the 
autocorrelations of the first 14 lags shows that the residuals satisfy the 
assumption of independence. 
 

Step 6: Test of auxiliary residuals 

 
� Go to the STAMP window again and choose <Test, Auxiliary residuals 

graphics…>. 
� In the Auxiliary residuals graphics window select Irregular, Level residual, 

Index plot, Density, Histogram, Normal, QQ plot, Write normality tests, and 
Write values exceeding (3.5). 

� Click OK.  
 
The STAMP graphics window in GiveWin displays the auxiliary residuals of the 
irregular and of the level component and their density function and normal 
probability plot: see Figure 3.6.14. The output below the figure describes the 
auxiliary residual test results as can be found in the Results window of GiveWin. 
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Figure 3.6.14: Auxiliary residuals and corresponding tests for the stochastic level 
deterministic seasonal model applied to the log of UK drivers KSI. 

 
Normality test for IrrRes Log_UKdriversKSI 
Sample Size     192 
Mean                   0.000027 
Std.Devn.              0.998613 
Skewness              -0.190959 
Excess Kurtosis       -0.163838 
Minimum               -2.884350 
Maximum                2.672501 
Skewness  Chi^2(1)       1.1669  [0.2800] 
Kurtosis  Chi^2(1)      0.21474  [0.6431] 
Normal-BS Chi^2(2)       1.3816  [0.5012] 
Normal-DH Chi^2(2)       1.4114  [0.4938] 
 
Normality test for LvlRes Log_UKdriversKSI 
Sample Size     192 
Mean                  -0.059080 
Std.Devn.              0.992958 
Skewness              -0.669142 
Excess Kurtosis        1.084877 
Minimum               -3.789216 
Maximum                2.172144 
Skewness  Chi^2(1)       14.328  [0.0002] 
Kurtosis  Chi^2(1)       9.4157  [0.0022] 
Normal-BS Chi^2(2)       23.744  [0.0000] 
Normal-DH Chi^2(2)       13.024  [0.0015] 
 
Eq  6 : Large values in LvlRes Log_UKdriversKSI. 
Period          Value  
1983. 2        -3.7892  [ 0.0001] 
 

Both Figure 3.6.14 and the auxiliary residual tests demonstrate that the auxiliary residuals of the 
irregular component satisfy the assumption of normality, whereas those of the level component 
do not satisfy this assumption. The latter fact means that we must be cautious with the 
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interpretation of the test statistics of individual auxiliary residuals and it underlines the 
importance of looking at the graphical output (Koopman et al, 2000). 
The auxiliary residual of the level component corresponding to February 1983 is extremely large 
(-3.79), which is an indication of a structural break in the level component. 
 

� Use the menu <File, Save> or <Ctrl+S> to save the graphs and minimize the 
STAMP Graphics window. 

 

Step 7: Conclusion of analysis 

The residuals obtained with the analysis of the log of the monthly UK drivers 
KSI from January 1969 to December 1984 with the stochastic level and 
deterministic seasonal model satisfy all the model assumptions of 
independence, homoscedasticity, and normality. However, the auxiliary residual 
of the level component for February 1983 is found to be extremely large (-3.79), 
which is an indication of a structural break in this component. Furthermore, the 
auxiliary residuals of the level component do not satisfy the assumption of 
normality. For these reasons, we expect that the model can be improved by 
adding an intervention variable to the local level and deterministic seasonal 
model. In fact, there is a very good reason why February 1983 was a special 
month for road safety in the UK. It was in that month that the seatbelt law was 
introduced, requiring front seat passengers in cars to wear a seatbelt. In Section 
3.6.5 we will therefore investigate the effect of modelling this event by adding a 
level shift intervention variable to the the local level and deterministic seasonal 
model. 
 

Step 8: Forecasting 

Because the stochastic level and deterministic seasonal model for describing 
the log of the monthly number of UK drivers KSI from January 1969 to 
December 1984 can still be improved, as will be discussed in the following 
sections, the issue of obtaining forecasts from this series is postponed until 
Section 3.6.6. 
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3.6.5 Intervention variables 

 
In the previous section, we discussed that it could be worthwhile to add an 
intervention variable to the stochastic level deterministic and seasonal model of 
the (log of the) number of UK drivers KSI for the period January 1969 through 
December 1984. The reason for this recommendation was the extremely large 
value of the February 1983 auxiliary residual of the level component. As stated 
in Section 3.6.4, this point in time coincides with the introduction of the seat belt 
law in the UK. 
 
Because the extremely large value concerns the auxiliary residual of the level 
component, in this section we will add a level shift variable to the stochastic 
level and deterministic seasonal model discussed in the previous section. 
 

Step 1: Start of analysis and data load 

In this first step of the analysis, we open GiveWin, load the data, and start 
STAMP, if needed. 
� If GiveWin is not yet open, then start GiveWin2.  
� If GiveWin is already open but with another dataset than the UK drivers KSI, 

then close all results, data, and graphics windows in GiveWin by clicking on 
the icon with the cross in the top right corner of each window. Use the menu 
<File, Open Data File…> to open the file “UKdriversKSI.in7”. 

� If GiveWin is already open and the UK drivers KSI dataset is already loaded, 
then proceed to the next instruction. 

 
The data file is loaded and displayed in a minimized window at the bottom of the 
GiveWin main window. To view the data file: 
� Click on the icon with the two overlapping boxes. 
� Minimize the data file window again and use the menu <Modules, Start 

Stamp> to start the STAMP program. 
 

Step 2: Model Formulation 

In this step, we will add a level shift in February 1983 to the stochastic level 
deterministic seasonal model from the previous section. First, formulate the 
model: 
� In STAMP, choose the menu <Model, Formulate>. 
� In the Data selection window select the variable Log_UKdriversKSI. 
� Then click OK. 
� In the Select components window, choose a Stochastic Level, No slope, 

Irregular, and Fixed seasonal. 
 
Next, we add the level shift: 
� Click Next. 
� Select the period in sample: year is 1983 and period is 2. 
� Click Level. 
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The text "Lvl 1983.2" appears in the list of interventions. 
 
� Then click on the Finish button.  
 
 

Step 3: Model estimation and inspection of results 

 
� In the Estimate Model window, select Maximum Likelihood. 
� Click OK.  
 
The model is estimated, and the following output appears in the GiveWin 
Results window: 
 
Equation  1. 
 
Log_UKdriversKSI = Level + Fixed seasonal + Interv + Irregular 
 
Estimation report 
Model with  2 parameters ( 1 restrictions). 
Parameter estimation sample is 1969. 1 - 1984.12. (T =  192). 
Log-likelihood kernel is 2.339682. 
Very strong convergence in   2 iterations. 
( likelihood cvg 1.328653e-015 
  gradient cvg   3.952394e-009 
  parameter cvg  5.449141e-014 ) 
 
Eq  1 : Diagnostic summary report. 
 
Estimation sample is 1969. 1 - 1984.12. (T =  192, n =  191). 
Log-Likelihood is 449.219 (-2 LogL = -898.438). 
Prediction error variance is 0.00501578 
 
Summary statistics 
            Log_UKdriver 
 Std.Error      0.070822 
 Normality        2.4014 
 H( 63)          0.75510 
 r( 1)          0.079936 
 r(12)          0.058582 
 DW               1.8396 
 Q(12,11)         15.267 
 Rs^2            0.30674 
 
Eq  1 : Estimated variances of disturbances. 
 
Component   Log_UKdriversKSI (q-ratio)   
Irr           0.0037838 ( 1.0000)  
Lvl          0.00047358 ( 0.1252) 

 
� Check the results (sample period, log-likelihood, estimated variance of 

disturbances) and compare them with the results from the analysis without 
intervention in the previous section.  

 
The estimation report tells that there was very strong convergence in two iterations. The 
diagnostic summary report shows that the addition of the intervention has improved the fit of the 
stochastic level deterministic seasonal model: the value of the log-likelihood function has 
increased from 437 to 449 and the prediction error variance has decreased from 0.00550 to 
0.00502 (see the previous section).  
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� In the STAMP window choose <Test, Further output…> in the menu. 
� Select Additional output, Get steady state, Anti-log analysis, and State and 

regression output. 
� Click OK. 
 
The GiveWin Results window will display the following additional results: 
 
Eq  1 : Estimated standard deviations of disturbances. 
 
Component   Log_UKdriversKSI (q-ratio)   
Irr            0.061513 ( 1.0000)  
Lvl            0.021762 ( 0.3538)  
 
Eq  1 : Estimated coefficients of final state vector. 
 
Variable      Coefficient      R.m.s.e.       t-value 
Lvl                7.2380      0.033960        213.13  [ 0.0000] 
Sea_ 1           0.010335      0.015834       0.65272  [ 0.5147] 
Sea_ 2           -0.10244      0.015814       -6.4775  [ 0.0000] 
Sea_ 3          -0.064452      0.015770       -4.0869  [ 0.0001] 
Sea_ 4           -0.14248      0.015736       -9.0543  [ 0.0000] 
Sea_ 5          -0.052342      0.015711       -3.3315  [ 0.0010] 
Sea_ 6          -0.090631      0.015696       -5.7741  [ 0.0000] 
Sea_ 7          -0.042554      0.015691       -2.7119  [ 0.0073] 
Sea_ 8          -0.032656      0.015696       -2.0805  [ 0.0388] 
Sea_ 9          0.0040042      0.015711       0.25487  [ 0.7991] 
Sea_10           0.083707      0.015736        5.3196  [ 0.0000] 
Sea_11            0.18782      0.015770         11.91  [ 0.0000] 
 
Anti-log trend analysis 
Trend value at end of period is 1391.34. 
 
Eq  1 : Estimated coefficients of explanatory variables. 
 
Variable      Coefficient      R.m.s.e.       t-value 
Lvl 1983. 2      -0.23981      0.053072       -4.5185  [ 0.0000] 

 
Just as in the model without intervention, the parameter estimates for the first and the ninth 
month of the seasonal component do not deviate from zero in the final state. At the end of the 
period, the trend value as presented by the anti-log trend analysis is 1391, which is a somewhat 
lower value than in the model without intervention (1396). 
 
New in the output are the estimated coefficients of the explanatory variables. In this case there 
is only one explanatory variable which is the intervention variable for February 1983. The 
estimated coefficient for the level shift is -0.240, which corresponds to a 100*(e

-0.23981
-1)=-21.3% 

change in the number of UK drivers KSI as a result of the introduction of the seat belt law. The 
coefficient is shown to be significant, but to guarantee that the t-value is reliable, we must first 
check whether the model assumptions are satisfied. 
 

� The summary statistics in the output of STAMP can be used to set up the 
following table (see also Table 3.6.8 in the Methodology report): 

 

 Statistic Value Critical 5% 
valuea 

Assumption satisfied 

Independence Q(12,11) 15.3 19.68 + 
 r(1) 0.0799 0.14 + 
 r(12) 0.0586 0.14 + 
Homoscedasticity H(63) 0.755 1.65 + 
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Normality N 2.40 5.99 + 

Table 3.6.7: Diagnostic test results for the stochastic level deterministic seasonal 
model with intervention applied to the log UK drivers KSI. aProbability that statistic 
exceeds critical value is 0.05. 

 
Table 3.6.7 shows that the stochastic level and deterministic seasonal model 
with an intervention variable satisfies all model assumptions. This guarantees 
that the t-test for the regression coefficient of the intervention variable (see 
output above) is reliable.  
 

Step 4: Graphics of model components 

 

� In the STAMP window choose menu <Test, Components graphics…>. 
Select Trend, Seasonal, Irregular, and Smoothed. 

� Click OK.  
 
The STAMP Graphics window appears with graphs of the observed log-
transformed time series and the modelled trend, seasonal, and irregular (see 
Figure 3.6.15).
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Figure 3.6.15: Observed log-transformed time series and the trend of the stochastic 
level deterministic seasonal model with intervention (top graph), seasonal component 
(middle graph), and irregular component (bottom graph) for the log of UK drivers KSI. 

 
Compared to the level of the model without intervention, the level in the present model shows a 
sudden decrease at the start of 1983 (see Figure 3.6.12 and 3.6.15, top graphs). This results in 
a value for the irregular component in February 1983 which is considerably smaller, in absolute 
terms, than in the model without intervention (bottom graphs). 

 
� Use the menu <File, Save> or <Ctrl+S> to save these graphs, e.g. as an 

Encapsulated Postcript file (*.eps). Minimize the STAMP Graphics window. 
 

Step 5: Test of model residuals 

 
� Go back to the STAMP window and choose <Test, Residuals graphics…>. 
� In the Residual graphics window select Residuals, Correlogram, with 14, 

Density, Histogram, Normal, QQ plot, and Write diagnostic tests.  
� Click OK.  
 
Figure 3.6.16 shows the standardized residuals and their correlogram, density 
function, and normal probability plot as depicted in the STAMP graphics window 
of GiveWin. 
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Figure 3.6.16: Residuals and residual tests for the stochastic level deterministic 
seasonal model with intervention applied to the log of UK drivers KSI. 

 
When we compare the top left graphs of Figure 3.6.13 and 3.6.16, we can see that the 
extremely large residual in February 1993 has disappeared in the latter figure because of 
adding the intervention variable. In the model with intervention variable only seven residuals 
(3.6%) are outside the 95% confidence interval. However, none of them is extremely large. 
 
From the top right graph, we learn that for 2 out of the first 14 lags the autocorrelation is (just) 
outside the 95% confidence interval, which is defined by the boundaries -2/√T=-0.14 and 
+2/√T=0.14. 
 
The bottom graphs show that the assumption of normality of the residuals is very well satisfied, 
which confirms the normality test results in Table 3.6.7. 
 

� Use the menu <File, Save> or <Ctrl+S> to save the graphs and minimize the 
STAMP Graphics window. 

 
In the Results window of GiveWin, the following residual test results can be 
found (only part of the results are printed below): 
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Goodness-of-fit results for Residual Log_UKdriversKSI 
Information criterion of Akaike    AIC        -5.149332 
... of Schwartz (Bayes)            BIC        -4.911807 
 
Serial correlation statistics for Residual Log_UKdriversKSI. 
Lag  dF    SerCorr   BoxLjung    ProbChi2(dF) 
  1    0     0.0799 
  2    0     0.0449 
  3    1    -0.0809     2.9183    [ 0.0876] 
  4    2    -0.1449     7.0597    [ 0.0293] 
  5    3     0.0232     7.1660    [ 0.0668] 
  6    4    -0.0716     8.1885    [ 0.0849] 
  7    5    -0.0489     8.6681    [ 0.1231] 
  8    6    -0.1351    12.3438    [ 0.0547] 
  9    7    -0.0049    12.3487    [ 0.0897] 
 10    8    -0.0541    12.9445    [ 0.1138] 
 11    9     0.0888    14.5601    [ 0.1037] 
 12   10     0.0586    15.2669    [ 0.1226] 
 13   11     0.1458    19.6698    [ 0.0501] 
 14   12     0.0201    19.7541    [ 0.0719] 

 
The addition of the intervention to the model has improved the goodness-of-fit: the AIC has 
decreased (from -5.07 to -5.15) as well as the BIC (from -4.85 to -4.91). 

 

Step 6: Test of auxiliary residuals 

 
� Go to the STAMP window again and choose <Test, Auxiliary residuals 

graphics…>. 
� In the Auxiliary residuals graphics window select Irregular, Level residual, 

Index plot, Density, Histogram, Normal, QQ plot, Write normality tests, and 
Write values exceeding (3.5). 

� Click OK.  
 
The STAMP graphics window in GiveWin displays the auxiliary residuals of the 
irregular and of the level component and their density function and normal 
probability plot: see Figure 3.6.17.  
 
� Use the menu <File, Save> or <Ctrl+S> to save these graphs and minimize 

the STAMP Graphics window. 
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Figure 3.6.17: Auxiliary residuals and corresponding tests for the stochastic level and 
deterministic seasonal model with intervention applied to the log of UK drivers KSI. 

The following output describes the auxiliary residual test results for normality as 
can be found in the Results window of GiveWin. 
 
Normality test for IrrRes Log_UKdriversKSI 
Sample Size     192 
Mean                  -0.000521 
Std.Devn.              0.999144 
Skewness              -0.081441 
Excess Kurtosis       -0.412446 
Minimum               -2.424978 
Maximum                2.528211 
Skewness  Chi^2(1)      0.21225  [0.6450] 
Kurtosis  Chi^2(1)       1.3609  [0.2434] 
Normal-BS Chi^2(2)       1.5731  [0.4554] 
Normal-DH Chi^2(2)       1.2611  [0.5323] 
 
Normality test for LvlRes Log_UKdriversKSI 
Sample Size     192 
Mean                   0.039095 
Std.Devn.              0.991080 
Skewness              -0.656959 
Excess Kurtosis        0.780304 
Minimum               -3.181119 
Maximum                2.053959 
Skewness  Chi^2(1)       13.811  [0.0002] 
Kurtosis  Chi^2(1)        4.871  [0.0273] 
Normal-BS Chi^2(2)       18.682  [0.0001] 
Normal-DH Chi^2(2)       13.017  [0.0015] 

 
Both Figure 3.6.17 and the auxiliary residual tests demonstrate that the auxiliary residuals of the 
irregular component satisfy the assumption of normality, whereas those of the level component 
do not satisfy this assumption. This was also the case in the model without intervention. From 
the middle right graph, we see that in 1973 and 1974 there are too many large negative auxiliary 
residuals of the level component. As mentioned above, this means that we must be careful with 
the interpretation of the test statistics for the level component's auxiliary residuals. However, the 
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extremely large value of the auxiliary residual of the level component for February 1983 that we 
observed in Figure 3.6.14 has disappeared in Figure 3.6.17. This is the result of including the 
level shift intervention variable in the model. 
 

Step 7: Conclusion of analysis 

 
The residuals obtained with the analysis of the log of the monthly UK drivers 
KSI from January 1969 to December 1984 with the stochastic level and 
deterministic seasonal model with intervention variable satisfy all the model 
assumptions of independence, homoscedasticity, and normality. The addition of 
the level shift intervention variable for February 1983 has improved the fit of the 
model, and the extremely large value of the auxiliary residual of the level 
component observed in the previous analysis has disappeared in the present 
one. The regression coefficient for the intervention variable is significant, and 
indicates that the introduction of the seat belt law resulted in a 21.3% reduction 
in the number of UK drivers KSI. However, the auxiliary residuals of the level 
component still do not satisfy the assumption of normality. Therefore, we must 
be careful with the interpretation of test statistics with respect to structural level 
breaks.  
 
In Section 3.6.6, we will extend the model with yet another component: a 
continuous explanatory variable. 
 

Step 8: Forecasting 

 
Because in the next section we will extend the stochastic level and deterministic 
seasonal model including an intervention variable with yet another explanatory 
variable, we postpone the forecasting to that section. 
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3.6.6 Explanatory variables 

 

In the previous section, we extended the stochastic level and deterministic 
seasonal model for the analysis of the log of the number of UK drivers KSI for 
the period January 1969 through December 1984 with an intervention variable. 
In this section, we will add yet another component: a continuous explanatory 
variable.  
 
This continuous explanatory variable is the log of the monthly prices of petrol in 
the UK in the period January 1969 to December 1984 of which is assumed that 
it may have affected car mobility and thus also the number of drivers KSI. The 
seat belt law intervention from the previous section will be kept in the model. 
 

Step 1: Start of analysis and data load 

 
If needed, we wil first open GiveWin, load the data, and start STAMP. 
� If GiveWin is not yet open, then start GiveWin2.  
� If GiveWin is already open from a previous exercise but with another dataset 

than the UK drivers KSI, then close all results, data, and graphics windows 
in GiveWin by clicking on the icon with the cross in the top right corner of 
each window. Use the menu <File, Open Data File…> to open the file 
“UKdriversKSI.in7”. 

� If GiveWin is already open and the UK drivers KSI dataset is already loaded, 
then proceed with the next instruction. 

 
The data file is loaded and displayed in a minimized window at the bottom of the 
GiveWin main window. To view the data file: 
� Click on the icon with the two overlapping boxes. 
� Minimize the data file window again and use the menu <Modules, Start 

Stamp> to start the STAMP program. 
 

Step 2: Model formulation 

 
In this step, we will add the petrol price variable to the stochastic level and 
deterministic seasonal model with seat belt law intervention from the previous 
section: 
� In STAMP, choose the menu <Model, Formulate>. 
� In the Data selection window select the variable Log_UKdriversKSI and click 

Add. 
� Also select the variable Log_PetrolPrice and click Add. 
� Then click OK. 
� In the Select components window, choose a Stochastic Level, No slope, 

Irregular, and Fixed seasonal. 
 
To add the level shift intervention variable for February 1983: 
� Click Next. 
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� Select the the point in the series: year is 1983 and period is 2. 
� Click Level. 
� Then click on the Finish button.  
 
 

Step 3: Model estimation and inspection of results 

 
� In the Estimate Model window, select Maximum Likelihood. 
� Click OK.  
 
The model is estimated, and the following output appears in the GiveWin 
Results window: 
 
Equation  1. 
 
Log_UKdriversKSI = Level + Fixed seasonal + Expl vars + Interv + 
Irregular 
 
Estimation report 
Model with  2 parameters ( 1 restrictions). 
Parameter estimation sample is 1969. 1 - 1984.12. (T =  192). 
Log-likelihood kernel is 2.342043. 
Very strong convergence in   2 iterations. 
( likelihood cvg 3.792323e-016 
  gradient cvg   1.065814e-009 
  parameter cvg  7.219832e-009 ) 
 
Eq  1 : Diagnostic summary report. 
 
Estimation sample is 1969. 1 - 1984.12. (T =  192, n =  191). 
Log-Likelihood is 449.672 (-2 LogL = -899.345). 
Prediction error variance is 0.00483573 
 
Summary statistics 
            Log_UKdriver 
 Std.Error      0.069539 
 Normality        1.9020 
 H( 63)          0.87770 
 r( 1)           0.10275 
 r(12)          0.052579 
 DW               1.7930 
 Q(12,11)         18.706 
 Rs^2            0.33163 
 
 
Eq  1 : Estimated variances of disturbances. 
 
Component   Log_UKdriversKSI (q-ratio)   
Irr           0.0040344 ( 1.0000)  
Lvl          0.00026772 ( 0.0664) 
 

� Check the results (sample period, log-likelihood, estimated variance of 
disturbances) and compare them with the results from the analysis without 
intervention in the previous section.  

 
We have very strong convergence in two iterations. The diagnostic summary report shows that 
the addition of the petrol price as explanatory variable has improved the stochastic level and 
deterministic seasonal model with seat belt law intervention: the value of the log-likelihood 
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function has increased from 449 to 450 and the prediction error variance has decreased from 
0.00502 to 0.00484. 
 
� In the STAMP window choose <Test, Further output…> in the menu. 
� Select Additional output, Get steady state, Anti-log analysis, and State and 

regression output. 
� Click OK. 
 
The GiveWin Results window displays the following additional results: 
 
Eq  1 : Estimated standard deviations of disturbances. 
 
Component   Log_UKdriversKSI (q-ratio)   
Irr            0.063517 ( 1.0000)  
Lvl            0.016362 ( 0.2576)  
 
Eq  1 : Estimated coefficients of final state vector. 
 
Variable      Coefficient      R.m.s.e.       t-value 
Lvl                6.6317       0.21428        30.948  [ 0.0000] 
Sea_ 1          0.0085360      0.015860        0.5382  [ 0.5911] 
Sea_ 2           -0.10336      0.015836       -6.5267  [ 0.0000] 
Sea_ 3          -0.064435      0.015801       -4.0778  [ 0.0001] 
Sea_ 4           -0.14119      0.015783       -8.9458  [ 0.0000] 
Sea_ 5          -0.052945      0.015757       -3.3601  [ 0.0009] 
Sea_ 6          -0.088490      0.015764       -5.6135  [ 0.0000] 
Sea_ 7          -0.039156      0.015787       -2.4803  [ 0.0140] 
Sea_ 8          -0.031078      0.015754       -1.9727  [ 0.0500] 
Sea_ 9          0.0039760      0.015756       0.25234  [ 0.8010] 
Sea_10           0.080770      0.015815        5.1073  [ 0.0000] 
Sea_11            0.18615      0.015816        11.769  [ 0.0000] 
 
Anti-log trend analysis 
Trend value at end of period is 758.765. 
 
Eq  1 : Estimated coefficients of explanatory variables. 
 
Variable      Coefficient      R.m.s.e.       t-value 
Log_PetrolPrice      -0.27721      0.098431       -2.8163  [ 0.0054] 
Lvl 1983. 2      -0.23757      0.046430       -5.1167  [ 0.0000] 
 

Just as in the model with seat belt law intervention but without petrol price as explanatory 
variable, the parameter estimates for the first and the ninth month of the seasonal component 
do not deviate from zero in the final state. At the end of the period, the trend value as presented 
by the anti-log trend analysis is 757, which is smaller than in the model with seat belt law 
intervention but without petrol price variable (1391). This large difference in the trend value is 
caused by the introduction of the explanatory variable, which explains part of the trend. 
 
The  regression coefficients for the seat belt law intervention (-0.23757) and for the log of petrol 
price (-0.27721) are both significant in this model. However, to guarantee that the t-values are 
reliable, we must first test the model assumptions. 
 

� The summary statistics in the output of STAMP can be used to set up the 
following table (see also Table 3.6.10 in the Methodology report): 

 

 Statistic Value Critical 5% 
valuea 

Assumption satisfied 

Independence Q(12,11) 18.7 19.68 + 
 r(1) 0.102 0.14 + 
 r(12) 0.0526 0.14 + 
Homoscedasticity H(63) 0.878 1.65 + 
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Normality N 1.90 5.99 + 

Table 3.6.8: Diagnostic test results for the stochastic level and deterministic seasonal 
model with intervention and explanatory variable applied to the log of UK drivers KSI. 

aProbability that statistic exceeds critical value is 0.05. 

 
Table 3.6.8 shows that the stochastic level and deterministic seasonal model 
with intervention and explanatory variable satisfies all model assumptions. This 
guarantees that the t-tests for the regression coefficients of the intervention 
variable and the explanatory variable (see output above) are reliable. According 
to this analysis, the introduction of the seat belt law resulted in a 100*(e-0.23757 – 
1) = -21.1% change in the number of UK drivers KSI (which is virtually identical 
to what we found in the previous section), while the regression coefficient for log 
petrol price indicates that a 1% rise in petrol price was associated with a 0.28% 
reduction in the number of UK drivers KSI.  
 

Step 4: Graphics of model components 

 

� In the STAMP window choose menu <Test, Components graphics…>. 
Select Trend plus Xs, Seasonal, Irregular, and Smoothed. 

� Click OK.  
 
The STAMP Graphics window appears with graphs of the observed log-
transformed time series and the modelled trend, seasonal, and irregular (see 
Figure 3.6.18). 
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Figure 3.6.18: Observed log-transformed time series and the trend of the stochastic 
level deterministic seasonal model with intervention and explanatory variable (top 
graph), seasonal component (middle graph), and irregular component (bottom graph) 
for the log of UK drivers KSI. 

 
Comparison of Figures 3.6.15 and 3.6.18 leads to the conclusion that there is no difference 
between the trend, seasonal, and irregular components of the model with and without petrol 
price as explanatory variable. The difference between the models lies in the composition of the 
trend component, which will be shown below.  

 
� Use the menu <File, Save> or <Ctrl+S> to save these graphs, e.g. as an 

Encapsulated Postcript file (*.eps). Minimize the STAMP Graphics window. 
 
Next, we will make a graph of the part of trend which is explained by the log of 
petrol price: 
� In the STAMP window choose menu <Test, Components graphics…>. 

Select Trend, Trend plus Xs, and Smoothed. 
� Click OK.  
The STAMP Graphics window appears with graphs of the observed log-
transformed time series and the modelled trend without and with the explained 
portion (see Figure 3.6.19). 
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Figure 3.6.19: Observed log-transformed time series and the trend of the stochastic 
level deterministic seasonal model with intervention and explanatory variable for the log 
of UK drivers KSI, without the explained portion (top graph) and with the explained 
portion (bottom graph). 

 
As can be seen in Figure 3.6.19, in the model with explanatory variable a considerable part of 
the trend is explained by the log of petrol price, whereas the remaining part of the trend is a 
stochastic level including the effect of the seat belt intervention. In the model without 
explanatory variable, the trend entirely consists of a stochastic level plus seat belt intervention 
effect. 
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� Use the menu <File, Save> or <Ctrl+S> to save these graphs, e.g. as an 

Encapsulated Postcript file (*.eps). Minimize the STAMP Graphics window. 
 

Step 5: Test of model residuals 

 
� Go back to the STAMP window and choose <Test, Residuals graphics…>. 
� In the Residual graphics window select Residuals, Correlogram, with 14, 

Density, Histogram, Normal, QQ plot, and Write diagnostic tests.  
� Click OK.  
 
Figure 3.6.20 shows the standardized residuals and their correlogram, density 
function, and normal probability plot as depicted by the STAMP graphics 
window in GiveWin. 
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Figure 3.6.20: Residuals and residual tests for the stochastic level and deterministic 
seasonal model with intervention and explanatory variable applied to the log of UK 
drivers KSI. 

 
When we compare the residuals and the autocorrelations for lags 1 to 14 of this model including 
intervention and explanatory variable with the residuals and autocorrelations of the model 
without explanatory variable (see the top left graphs of Figures 3.6.16 and 3.6.20), we see 
almost no differences. However, from the bottom graphs of Figures 3.6.16 and 3.6.20 we can 
conclude that the distribution of the residuals is more close to the normal distribution. This 
conclusion is confirmed by the Doornik-Hansen statistic, whose value is smaller for this model 
(1.90, see Table  3.6.8) than for the model without explanatory variable (2.40, see Table 3.6.7). 
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� Use the menu <File, Save> or <Ctrl+S> to save the graphs and minimize the 
STAMP Graphics window. 

 
In the Results window of GiveWin, the following residual test results can be 
found (only part of the results are printed below):
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Goodness-of-fit results for Residual Log_UKdriversKSI 
Information criterion of Akaike    AIC        -5.175474 
... of Schwartz (Bayes)            BIC        -4.920982 
 
Serial correlation statistics for Residual Log_UKdriversKSI. 
 
 Lag  dF    SerCorr   BoxLjung    ProbChi2(dF) 
  1    0     0.1028 
  2    0     0.0582 
  3    1    -0.0805     3.9804    [ 0.0460] 
  4    2    -0.1456     8.1591    [ 0.0169] 
  5    3     0.0203     8.2410    [ 0.0413] 
  6    4    -0.0653     9.0899    [ 0.0589] 
  7    5    -0.0583     9.7707    [ 0.0820] 
  8    6    -0.1682    15.4709    [ 0.0169] 
  9    7    -0.0467    15.9130    [ 0.0259] 
 10    8    -0.0856    17.4054    [ 0.0262] 
 11    9     0.0598    18.1372    [ 0.0336] 
 12   10     0.0526    18.7065    [ 0.0442] 
 13   11     0.1513    23.4503    [ 0.0153] 
 14   12     0.0237    23.5674    [ 0.0233] 
 

The addition of the petrol price variable to the model has improved the goodness-of-fit: the AIC 
has decreased (from -5.15 to -5.17) as well as the BIC (from -4.91 to -4.92). 

 

Step 6: Test of auxiliary residuals 

 
� Go to the STAMP window again and choose <Test, Auxiliary residuals 

graphics…>. 
� In the Auxiliary residuals graphics window select Irregular, Level residual, 

Index plot, Density, Histogram, Normal, Write normality tests, and Write 
values exceeding (3.5). 

� Click OK.  
 
The STAMP graphics window in GiveWin displays the auxiliary residuals of the 
irregular and of the level component and their density function and normal 
probability plot: see Figure 3.6.21.  
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Figure 3.6.21: Auxiliary residuals and corresponding tests for the stochastic level 
deterministic seasonal model with intervention and explanatory variable applied to the 
log of UK drivers KSI. 

The following output describes the auxiliary residual test results for normality as 
can be found in the Results window of GiveWin. 
 
Normality test for IrrRes Log_UKdriversKSI 
Sample Size     192 
Mean                  -0.000458 
Std.Devn.              0.999195 
Skewness              -0.063404 
Excess Kurtosis       -0.402381 
Minimum               -2.408254 
Maximum                2.494782 
Skewness  Chi^2(1)      0.12864  [0.7198] 
Kurtosis  Chi^2(1)       1.2953  [0.2551] 
Normal-BS Chi^2(2)       1.4239  [0.4907] 
Normal-DH Chi^2(2)        1.055  [0.5901] 
 
Normality test for LvlRes Log_UKdriversKSI 
Sample Size     192 
Mean                   0.080397 
Std.Devn.              0.995941 
Skewness              -0.481094 
Excess Kurtosis        0.144688 
Minimum               -2.756100 
Maximum                2.427820 
Skewness  Chi^2(1)       7.4065  [0.0065] 
Kurtosis  Chi^2(1)      0.16748  [0.6824] 
Normal-BS Chi^2(2)       7.5739  [0.0227] 
Normal-DH Chi^2(2)        8.305  [0.0157] 
 

Both Figure 3.6.21 and the auxiliary residual tests demonstrate that the auxiliary residuals of the 
irregular component satisfy the assumption of normality, whereas those of the level component 
do not satisfy this assumption. This was also the case in the model with intervention but without 
the petrol price explanatory variable. From the bottom left graph, we see that in 1973 and 1974 
there are quite a number of large negative auxiliary residuals of the level component. As 
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mentioned in the previous section, this means that we must be careful with the interpretation of 
the test statistics for the auxiliary residuals corresponding to the level component. 
 

Step 7: Conclusion of analysis 

 
In this section, we extended the stochastic level deterministic seasonal model 
with the seat belt intervention and the log of petrol price as explanatory variable 
and applied this model to the log of the monthly UK drivers KSI from January 
1969 to December 1984. The residuals obtained with the analysis of this model 
satisfy all the model assumptions of independence, homoscedasticity, and 
normality. However, the auxiliary residuals of the level component do not satisfy 
the assumption of normality. Therefore, we must be careful with the 
interpretation of test statistics with respect to structural level breaks. 
According to this analysis, the introduction of the seat belt law resulted in a 
100*(e-0.23757 – 1) = -21.1% change in the number of UK drivers KSI, while a 1% 
rise in petrol price was associated with a 0.28% reduction in the number of UK 
drivers KSI. 
 

Step 8: Forecasting 

 
Since the stochastic level deterministic seasonal model with the seat belt 
intervention and the log of petrol price as explanatory variable provides an 
appropriate description and explanation of the log of the monthly UK drivers KSI 
series, as a final step in the analysis we will make forecasts for this series. By 
performing an anti-log analysis, the forecasts will also be re-expressed in terms 
of the original count data.  
 
As in Section 3.6.6 of the Methodology report, we will make in-sample forecasts 
so as to validate the model. To this end, the stochastic level and deterministic 
seasonal model with the seat belt intervention and the log of petrol price as 
explanatory variable is fitted to the log of the monthly number of UK drivers KSI, 
but now only for the period January 1969 to June 1984. So, we now do not 
include the last six observations (i.e., the last half year) of the UK drivers KSI 
series in the analysis. The results of the analysis without the months July 1984 
through December 1984 are very similar to the results presented earlier in this 
section for the complete series. 
 
� Repeat steps 1 and 2 of this section.  
� Then, go to step 3: in the Estimate Model window, select Maximum 

Likelihood. 
� Choose Less forecasts 6. 
� Click OK. 
� Go through steps 4 to 7 to check the model assumptions. 
 
Next, we use these results to obtain forecasts for July 1984 through December 
1984 and compare the forecasts with the observed number of UK drivers KSI 
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for this period. The actual values of the log of the petrol price are used for 
making the forecasts. 
 
� Go to the STAMP window and choose <Test, Forecasting…>.  
� In the Forecasting window select 6 as the number of forecasts, PlusXs, 

Seasonal, Use available database Xs, and Write forecasts Y. 
� Click OK.  
 
The STAMP graphics window in GiveWin displays the log of the UK drivers KSI 
series from January 1976 until June 1984 extended with the six-months 
forecasts including their 70% confidence interval (plus and minus one estimated 
standard deviation) in the top figure; the log of the UK drivers KSI and the 
extrapolated trend are shown in the middle figure, and the extrapolated 
seasonal is displayed in the bottom figure, see Figure 3.6.22. 
 
The GiveWin Results window contains the forecasted values for July 1984 to 
December 1984, their root mean square errors, and the lower and upper 
bounds of the 70% confidence intervals. 
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Figure 3.6.22: Six-months forecasts (July-December 1984) of the stochastic level and 
deterministic seasonal model with intervention and explanatory variable applied to the 
log of UK drivers KSI, January 1969 – June 1984. 

 
For the forecast, the fixed seasonal is set through to the forecast range (bottom graph). The 
stochastic level part of the trend is set through as a horizontal line, whereas the explained part 
of the trend is extrapolated by multiplying the log of the petrol price with the corresponding 
regression coefficient. The total forecast is obtained by adding up the forecasts for the trend and 
the seasonal. 

 
� Use the menu <File, Save> or <Ctrl+S> to save these graphs, e.g. as an 

Encapsulated Postcript file (*.eps). Minimize the STAMP Graphics window. 



  3.6 State space models 

 

 

  
P r o j e c t  c o - f i n a n c e d  b y  t h e  E u r o p e a n  C omm i s s i o n ,  D i r e c t o r a t e - G e n e r a l  T r a n s p o r t  a n d  E n e r g y  

 

Page  263  

 
In Figure 3.6.23, the observed number of UK drivers KSI (not their logs) are 
compared with the forecasts (also in absolute numbers). The figure also 
displays the 90% confidence limits, determined as the forecasted values plus 
and minus 1.64 times the root mean square error (see also Section 3.6.6 of the 
Methodology report). As can be seen in Figure 3.6.23 the observed numbers of 
UK drivers KSI for July-December 1984 are all located within the 90% 
confidence limits of the forecasts. This is a good sign because it means that 
none of the observed values significantly deviates from the forecasts in this 
period. 
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Figure 3.6.23: Observed number of UK drivers KSI in 1984, forecasts of the stochastic 
level and deterministic seasonal model with intervention and explanatory variable, and 
90% confidence interval. 

 
To display the forecasts in terms of absolute numbers in STAMP, we apply an 
anti-log analysis: 
� Again go to the STAMP window and choose <Test, Forecasting…>.  
� In the Forecasting window select 6 as the number of forecasts, PlusXs, 

Modified anti-log analysis, Use available database Xs, and Write forecasts 
Y. 

� Click OK. 
 
The STAMP graphics window in GiveWin displays the original observations 
from January 1976 until June 1983 extended with the six-months forecasts with 
70% confidence interval (plus and minus one estimated standard deviation) in 
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the top figure and the original observations and the extrapolated trend in the 
bottom figure: see Figure 3.6.24. 
 
In the Results window of GiveWin the following forecasts for the original 
observed time series have been added: 
Period     Forecast    R.m.s.e.      - Rmse      + Rmse 
1984. 7      1262.9      94.991      1167.9      1357.9 
1984. 8      1270.3      97.608      1172.7      1367.9 
1984. 9      1311.2      102.84      1208.3      1414.0 
1984.10      1406.1      112.49      1293.7      1518.6 
1984.11      1565.8      127.67      1438.1      1693.5 
1984.12      1659.1      137.79      1521.3      1796.9 

 

The list of forecast results gives for each time point the value of the forecast, its 
standard error, and the lower and upper limit of the 70% confidence interval. 
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Figure 3.6.24: Anti-logged six-months forecasts (July-December 1984) of the stochastic 
level and deterministic seasonal model with intervention and explanatory variable 
applied to the log of UK drivers KSI, January 1969 – June 1984. 
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3.6.7 Conclusion state space models 

 

This chapter showed examples of the application of state space analysis to road 
safety data. State space analysis was used to describe the development of road 
unsafety, to explain part of this development by adding interventions or 
explanatory variables, and to make forecasts of road unsafety. 
 
For the analysis of a new road safety dataset, we recommend to first analyse 
the data on fatalities, casualties, drivers KSI, etc. by going through analysis 
steps 1 to 7 as presented in this chapter. The most efficient way to find the best 
fitting model is to start from a stochastic level and a stochastic slope 
component. If there is possible seasonality, e.g. in the case of quarterly, 
monthly, or weekly data, a dummy or trigonometric seasonal should be included 
in the model. Then, the estimated variances of disturbances indicate whether 
the components should be treated stochastically or deterministically. Next, if the 
final state value of a deterministic component is not significantly different from 
zero, then the component can be removed from the model. 
 
Always carefully check whether the residuals of the model satisfy the model 
assumptions of serial independence, homoscedasticity, and normality. The 
statistics as presented in Table 3.6.1, for example, can be used for that 
purpose. However, one should not only rely on these statistical tests, but also 
make use of graphical tests, like the plot of the standardised residuals, the 
correlogram, the normal density diagram, and the normal probability plot. 
 
The auxiliary residuals of the irregular component are useful to detect outlier 
observations and the auxiliary residuals of the level, slope, and seasonal 
components can be employed to find structural breaks in the respective level, 
slope, and seasonal. The auxiliary residuals should be tested for normality, by 
using statistical tests (e.g., the Doornik-Hansen statistic) and graphical output 
as the auxiliary residual plot, the normal density diagram, and the normal 
probability plot. If the auxiliary residuals of a component are not normally 
distributed, then this can be interpreted as a warning that the tests of outliers or 
structural breaks should be interpreted with care. 
 
With state space analysis, forecasts can be made for short and long periods 
ahead. In doing this, one should be attentive to the fact that the forecasts totally 
rely on setting through the dynamics of the time series from the past to the 
future, at least if no additional information regarding the future development of 
explanatory variables is added. A very useful property of state space analysis is 
that it produces confidence intervals for the forecasts, which provide insight in 
the range of possible future values. In general, these ranges become 
impressively wide when the time span between the forecast and the last 
observation grows. This prevents the user of state space analysis from drawing 
too firm conclusions and helps to put the forecast results into perspective. 
 



 

Chapter 4 - Conclusion 
 
The present document constitutes the practical part of the best practice advice 
for the analysis of complex data structures by Work Package 7 of the SafetyNet 
project. This manual is intimately linked to D7.4, “Multilevel modelling and time 
series analysis in traffic research – A methodology”. While in the methodology 
report the emphasis is on theoretical background information, the manual gives 
practical instructions for the conduction of multilevel and time series analyses 
on the basis of user friendly software. Like the methodology report, this manual 
is divided into two main chapters each dedicated to one broad family of 
analyses, multilevel modelling and time series analysis. 
 
In Chapter 2, first an overview is given over the various multilevel models 
presented in this deliverable. Moreover the software used in this deliverable and 
other available multilevel software is discussed (Section 2.1). Multilevel 
modelling is then introduced with the simplest case (Section 2.2): A linear 
variable (speed of a car) was predicted by another linear variable (length). In 
that example the individual cars constituted the first level, a second level was 
given by the road sites at which the speed was measured. It was also 
investigated whether the regions had an effect on the speed measurements (i.e. 
whether there was a third level), however, this was not the case.  
 
Often in road safety research, variables are not linear. Therefore the linear 
models are put into the framework of the Generalised Linear Model that allows 
to model variables from other distributions, for example binary response 
variables, as well. As an example of a binary response variable, the data from 
an alcohol study are presented, indicating whether a driver had a BAC above 
the legal limit or not (Section 2.3.2). The individual drivers were the first level, 
and again, the road site at which the alcohol level was tested constituted the 
second level and it was demonstrated that first-level as well as second-level 
variables could explain some of the variation in drink-driving. This data could 
also be analysed as multinomial-response data with 3 categories (BAC<.05, 
.05>BAC>.08, and BAC>.08) as demonstrated in Section 2.3.3. In this section it 
is demonstrated how this type of data can be considered as multivariate 
response structures and can be implemented in a multilevel model.  
 
The number of accidents can be assumed to be Poisson-distributed and in 
Section 2.3.4 it is demonstrated how the numbers of fatal accidents can be 
predicted by law-enforcement measures. The first level in this analysis was 
given by the counties in which the number of fatalities had been established and 
it was shown that this number varied across regions (the second level) and that 
the effect that alcohol and speed controls had also varied across regions.  
 
Often in road safety research, the same individual or unit is measured a number 
of times subsequently. Multilevel modelling can be used for such longitudinal 
data. This was demonstrated in Section 2.5 with a simulated data set of driving 
scores taken over 6 consecutive measurements. In this case, the individual 
measurements constituted the first level and the individuals from whom the 
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measurements were taken formed the second level. It was demonstrated how 
this technique allows the inclusion of predictors at the measurement level (i.e. 
number of km driven at time of measurement) as well as at the individual level 
(e.g. age at acquirement of driver’s licence). 
 
Similarly to a structure of repeated measurements, multilevel models can also 
serve to analyse multiple responses or measurements from the same individual 
unit. This was demonstrated in Section 2.4, where accident numbers and fatality 
numbers were predicted simultaneously by law-enforcement measures in a 
multivariate model. The multivariate response structure was set up, so that the 
number of fatalities and the number of accidents jointly formed the data vector. 
In this case the indicator for the lowest level does not correspond to the unit of 
measurement (the counties) but to an indicator specifying the type of response 
given (number of accidents or number of fatalities). 
 
The topic of Chapter 3 is the analysis of road safety time series data. In the 
introduction (Section 3.1) a short overview is given over the different methods 
as well as the software used in this manual and other available software.  
 
The first time series approach discussed is the well known linear regression 
approach. Although technically not a specific time series analysis method, due 
to the fact that it is well known, it appeared this method is suitable to 
demonstrate the key issues with time series data (in road safety) in an 
environment familiar to many readers. It is demonstrated that the ordinary linear 
regression model is not suitable for the number of fatalities in Austria. In fact, 
both the heteroscedasticity and the independence assumption have to be 
questioned.  
 
Next, the ARMA-type section demonstrates how the examples discussed in the 
methodology report can be fit using SPSS. Details about the Norway fatalities 
dataset, UK-KSI drivers and the French fatalities examples are given. Finally, in 
the state space section, the model properties are discussed using examples 
based on Norwegian and Finnish fatality data. Finally, more extensive models 
are developed based on the UK-KSI data.  
 
To conclude, a wide range of examples of road safety data analyses was 
presented in a very detailed way, allowing the reader to understand the 
necessary decisions about distributional assumptions, variables included, and 
estimation methods chosen. The data files used are included so that each 
action and output can be traced by the reader. The interpretations are directly 
linked to the output, so that they can serve as examples enabling the reader to 
interpret the output for the same type of analysis with a different set of data. 
 
Together with the methodology report, D7.4, this manual forms the best practice 
for the analysis of complex data structures. The reader should have understood 
the necessity to check the assumptions underlying the statistical analyses used, 
and if necessary to use methods like multilevel modelling and time series 
analyses that explicitly represent complex data structures and thus allow 
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researchers conduct valid analyses and gain more information about the 
structure itself.  
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