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Executive Summary

The SafetyNet project is set up to build a European Road Safety Observatory.
The data assembled or gathered for the observatory consist of the Community
database on Accidents on the Roads in Europe (CARE); data on road safety
risk indicators; data on road safety performance indicators and in-depth
accident data. Potential users will link data from different data-sets, consider
different levels of aggregation jointly, and analyse the development over time.
Work package 7 (WP7) is set up to deal with statistical and conceptual issues
that come into play when analysing such complex data structures.

One of WP7’s main objectives is to develop a best practice advice for the
analysis of data structures that require more than the standard statistical tools.
This best practice consists of D7.4 “Multilevel modelling and time series
analysis in traffic research — A methodology” and D7.5 “Multilevel modelling and
time series analysis in traffic research — The manual”.

The main goal is to enable the reader to deal with complex data structures that
show dependencies in space (nested data) or in time (time series data). At first
it is demonstrated how such dependencies can compromise the applicability of
standard methods of statistical inferences, because they can lead to an
underestimation of the standard error and consequently of the error in statistical
tests.

As a solution to this problem, two families of statistical techniques are presented
to deal with these dependencies. Multilevel Modelling is dedicated to the
analysis of data that are structured hierarchically. It offers the possibility to
include hierarchical structures into the model of analysis. In road safety
research, multilevel analyses allow for the introduction of exposure data and of
safety performance indicators, even if those are not specified at the same level
of disaggregation as the accident data themselves. In this way, multilevel
analyses allow a global and detailed approach simultaneously. Time series
analyses are employed to overcome dependency issues in time-related data.
They allow describing the development over time, relating the accident-
occurrences to explanatory factors such as exposure measures or safety-
performance indicators (e.g., speeding, seatbelt-use, alcohol, etc), and
forecasting the development into the near future.

Deliverable 7.5 contains the manual to support the methodology D7.4, where
the theoretical background for these two families of analyses is given. For each
technique described in the methodology, this manual presents the instructions
to fit the models on the basis of user friendly software, as well as guidelines for
interpreting the results. The aim of the manual is to enable the reader to
conduct all analyses described in the methodology and this way to get hands on
experience in the analysis of road safety data. To enable the reader to track
every step presented, the data sets discussed in the various sections are
available.



Chapter 1 - Introduction

Heike Martensen and Emmanuelle Dupont (IBSR)

This deliverable has been produced in Workpackage 7 (WP7) of the SafetyNet
project. WP7 is set up to deal with statistical and conceptual issues that come
into play when analysing complex data structures as they arise in road safety
research when combining data from different sources or when considering data
that have been collected over a long timespan. One of its main objectives is the
development of a best practice for the analysis of data structures that require
more than the standard statistical tools.

This best practice consists of D7.4 “Multilevel modelling and time series
analysis in traffic research — A methodology” (subsequently, simply “the
methodology-report”) and the present deliverable. This document contains the
practical instructions to support the methodology, where it has been described
how to deal with data that are dependent in space (nested data) or in time (time
series data). It has been demonstrated how such dependencies can
compromise the applicability of standard methods of statistical inferences,
because they lead to an underestimation of the standard error and
consequently of the probability to classify a result as significant that is in fact
due to chance.

Two families of statistical techniques have been presented to deal with these
dependencies. Multilevel Modelling is dedicated to the analysis of data that are
structured hierarchically and Time Series analyses are employed to overcome
dependency issues in time-related data. The methodology is organized in two
main chapters, focussing on multilevel modelling (Chapter 2) and time series
analysis (Chapter 3) respectively.

For those sections in the methodology where models dedicated to multilevel
analysis or to time series analysis are presented, this manual presents the
instructions to fit each model on the basis of user friendly software, as well as
guidelines for interpreting the results. The aim of this document is to enable the
reader to conduct all analyses described in the methodology and this way to get
hands-on experience in the analysis of road safety data. To enable the reader
to track every step presented, the data sets discussed in the various sections
are available. The data are included as a CD and will be available at the
SafetyNet website (www.erso.en/safetynet.htm).

This manual is not a stand-alone document. It is intimately related to the
methodology and its sections were written under the assumption that the
respective part of the methodology report is known. To allow an easy matching
of methodology report and manual sections, the numbering in the manual is the
same as that in the methodology report. Some sections in the methodology
report, however, do not contain data examples or the models presented employ
traditional techniques rather than multilevel or dedicated time series models.
For these latter sections there is no counterpart in this manual. As a
consequence, some sections in the manual are rather short, their main purpose
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being, to allow the numbering to continue in the same way as in the
methodology report. In Figures 1.1 and 1.2, the structure of Chapters 2 and 3 is
presented. Sections that are represented by a colourless box are present in the
methodology report, but there is no corresponding example in this manual.

[ multilevel models ]

continuous discrete multiple
o Final
models described two-level model || binomial responses multivariate model
s P 24

| multinomial responses longitudinal data
T w5

- counts structural equation
234 modelling 2.6

{dependent variable

three levels & more
et

Figure 1.1: Structure of multilevel models presented in Chapter 2. Note: Sections
represented in white are present in the methodology report but have no corresponding
example in this manual.

Chapter 2 starts with a short description of the principles of multilevel modelling
and a software overview in 2.1. Section 2.2 is dedicated to modelling of
continuous responses and section 2.3 to the modelling of discrete responses.
Section 2.4 presents an example for a multivariate model and section 2.5 for a
model for longitudinal data.
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[ time series models J
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Figure 1.2: Structure of multilevel models presented in Chapter 3. Note: Sections
represented in white are present in the methodology report but have no corresponding
example in this manual.

Chapter 3 starts with a short introduction to time series analysis and a software
overview (3.1). Section 3.2 describes traditional regression analyses models.
Traditional regression analyses models were chosen because they are probably
the best known type of model, and are often used in the time series context.
Special attention is paid to diagnostic tools that serve to detect possible
violations of the assumption when dealing with time series data and the
possibilities to solve these problems within the traditional framework. In sections
3.4 to 3.6 of the methodology report models dedicated to time series analyses
are presented. In the end, these models can be categorised into two classes,
one group, including DRAG type modes, that can be seen as variants of so-
called ARMA-type models and another group of decomposition models that can
be regarded as members of state space models. In this manual there are two
extensive sections on ARMA-type models (3.5) and on state space models (3.6)
respectively. Both contain many empirical examples and detailed instructions
for their implementation.

Chapter 4 presents an overview of the methods presented and the examples
used.
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Chapter 2 - Multilevel Modelling

2.1 Introduction
Heike Martensen and Emmanuelle Dupont (IBSR)

As described in more detail in the methodology report, in traditional regression
analyses a dependent variable (y) is predicted by a combination of one or more
independent variables (x7, X2, ...), such that y can be modelled by equation
2.1.1.

v, =by+bx +b,x, +...+e, (2.1.1)
with i being the index of the subjects of study (e.g. accidents, persons, etc.).

As examples, injury severity in an accident can be predicted by the speed of
collision or accident frequency can be predicted by the number of alcohol
controls and the number of speed infringements. Of course, these predictions
are never perfect. Everything that is not predicted is assumed to be due to the
randomly distributed error e,.

One of the most important assumptions upon which the traditional analyses are
based is the independence assumption, stating that the residuals, the ¢,’s, are

independently distributed across all units. Hierarchical structures or nested data
often cause the independence assumption to be violated. In hierarchies, the
cases within one group are often more similar to each other than the cases in
another group. These hierarchical structures have to be represented in the
model of analysis, because otherwise the residuals (the variation that cannot be
explained by the model) will show the same structure and will therefore not be
independently distributed. Examples for such hierarchies are presented in the
remainder of the document. To name just a few: In section 2.2 speed data are
presented that are collected at a number of randomly selected road sites. The
speed of cars at the same road site is jointly influenced by a large number of
factors and therefore cars at the same road site are more similar in speed than
between different road sites. In sections 2.3.2 and 2.3.3 data on driving under
alcohol influence are presented. Again the probabilities of having drunk are
more similar for drivers at the same road site as compared to drivers at different
road sites. In sections 2.3.4 and 2.4 the fatalities for counties in Greece are
presented and it is demonstrated that the numbers of fatalities as well as the
effect of certain measures (alcohol and speed controls) vary across regions.

Multilevel modelling offers the possibility to include hierarchical structures into
the model of analysis by allowing random variation at each level of the model.
Multilevel models also allow the effect of predictor variables to vary across
higher level units. In the present chapter, multilevel models are presented for
continuous data (section 2.2), dichotomous data (section 2.3.2), and count data
(section 2.3.4). Moreover it is demonstrated how multilevel models can be used
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to establish a multivariate data structure (section 2.4) that can also be used for
multinomial responses (section 2.3.3) and repeated measurement data (section
2.5).

The multilevel models are all implemented with the MLwiN software (Rasbash,
Steele, Brown, & Prosser, 2004, www.mlwin.com), dedicated to multilevel
modelling. The reason that this software was chosen is its high educational
value. In MLwiN (Rasbash et al., 2004), the model formulation is menu-based
and can therefore be mastered easily without studying a programming
language. The analyses are presented in the form of model equations, allowing
a good understanding of the model built. Another advantage of this software is
the presence of diagnostic methods tailored to multilevel modelling. Most
notably, residuals can be studied at each of the levels included in the model.
The program also has excellent plotting functions with an interface that is easy
to use, encouraging a thorough inspection of raw data, model predictions, and
residuals. The output of the analysis is also presented in the framework of
model formulation: the parameters in the model equations are simply replaced
by their estimates. This presentation allows maximal understanding of the role
of each parameter, and of its possible interpretation.

The downside of this very educational interface is its impracticality: no tables
are provided as output, the text in the Equations window cannot be copied;
there is no way to export the resulting estimations but to simply type them over.
The program is in fact so educational that it forces the user to conduct
him/herself many of the calculations necessary for interpretation (variance
partition coefficients, test statistics). This policy of not allowing the user to
simply take some output without understanding how it came about, can become
very tedious once one has passed the initial phase of trying to understand the
models and that one simply wants to carry out some routine analyses.

HLM (Bryk, Raudenbush, & Congdon, 1996) is also a special purpose statistical
package that will fit many kinds of multilevel models. It has been under active
development since the mid 1980s and is now distributed by Scientific Software
International (SSI, www.ssicentral.com).

The MIX project (Hedeker & Gibbons, 1996 a, b) is a collection of programs for
multilevel techniques, including mixed-effects linear regression, mixed-effects
logistic regression for nominal or ordinal outcomes, mixed-effects probit
regression for ordinal outcomes, mixed-effects Poisson regression, and mixed-
effects grouped-time survival analysis. The programs can be downloaded from
http://tigger.uic.edu/~hedeker/mix.html.

WINBUGS is a software that uses Bayesian estimation algorithms (MCMC, see
section 2.7.2 in the Methodology report). Models are represented by a flexible
language. Additionally it allows the user to specify their model on a graphical
interface.

Multilevel modelling can also be carried out in R (http://cran.r-project.org) or its
commercial version S-Plus (www.insightful.com/). These programs allow most
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Chapter 2

of the functions present in MLwiN but without its easily accessible user
interface.

The standard statistical software packages allow multilevel modelling to some
extent. Most notably SAS, allows the estimation of all models presented in this
document (Littell, Milliken, Stroup, and Wolfinger, 1996). However, it does not
enable the detailed diagnostics tailored to these models. SPSS only allows the
estimation of linear multilevel models. An excellent collection of reviews how to
implement multilevel models in a wide variety of statistical software can be
found on the MLwiN website (www.mlwin.com/softrev/index.html).

Within the present chapter on multilevel modelling, there is a build-up of
information about the use of MLwiN. The chapters on linear models form an
introduction to MLwiN and some of its possibilities as well. They contain very
detailed information how to address the functions and how to interpret the
output. In later chapters this information is more compressed. This all said, the
focus of this document is not to learn to deal with MLwiN (for all details the
reader is referred to the MLwiN manual by Rasbash, Steel, Brown, & Prosser,
2004) but to get a practical introduction to the multilevel analysis of road safety
data.



2.2 Multilevel linear regression models

Heike Martensen and Emmanuelle Dupont (IBSR)

2.2.1 Basic two level random intercept and random slope
models

The example data used in this and the following section are based on a national
speed survey conducted in Belgium. The speed of 4994 cars was “measured” at
131 randomly selected road sites. Additionally, the length of each car was
recorded. The question pursued here, is whether there is a relation between the
speed and the length of the car (considered here as rough indicator of its
engine power). The data contain the following variables:

IDlocation Identifies the road site (i.e. the location)

IDsubject Identifies the subjects, i.e. the individual cars within each
location

Speed Indicates the speed of that car

Length Indicates the length of that car

LengthCentred Indicates the length of that car minus the average length

LengthCat Indicates whether a car is shorter (0) or longer (1) than 4.3m

TrafficCount Indicates the number of cars passing a road site during
measurement

TrafficCountCat Indicates whether fewer (0) or more (1) than 100 cars passed

Province The Belgian Province in which measurement has taken place

Data load

To begin with, we will import the data from Excel.

e Open MLwiN

¢ Open the data file (SPEED.xIs) in Excel

e Select all columns (ctrl A) and copy them (ctrl C) in Excel
e Go to MLwiN, press Ctrl V

The following window appears:
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T
Code for mizsing values: I'S'SSSEQ8
Column
IDlocation IDsubject Speed Length LengthCertre | LimitCat Limitkhmh

1 1 63.44 4.5 -05 1 a0
1 2 57 .96 5.2 0.z 1 50
1 5 7276 oIS 0.5 1 50
1 4 59.78 48 -0.2 1 S0
1 5 2919 EA 01 1 a0
1 5] 75.75 4.5 -0.5 1 a0
1 7 65.24 5.8 05 1 a0
1 g 96.75 5.8 0.3 1 50
1 9 55.06 4.5 -0.5 1 50

[ Use first row as names [ limiter ITAB

Paste | Eree Columng |

e Check “Use First row as names” in the lower left corner of the Paste View
Window

e C(Click on “Free Columns” (this assigns the first free columns in MLwiN to the
imported data)

e C(Click on “Paste”

¢ Close the paste window

e Select “File” in the top menu bar and save the worksheet you just created

The centre of MLwiN is the Equations window, where the models that you want

to fit to the data are built.

e Click on “Model” in the menu bar and select “Equation”

e Click on “Notation” at the bottom of the Equations window

e Uncheck “General” (this changes the notation from the General-linear-model
notation to the linear-model notation)

e Click “Done”

2.2.1.1. An “empty” single-level model

The first model built is one that ignores the hierarchical structure in the data. It
includes only one level, that of the individual cars (IDsubject). This model,
containing only an intercept and no predictors will be used as a point of
reference.

Model formulation

Define the dependent variable:
e C(Click on the “y” and
= Select “Speed” from the drop-down menu as dependent
variable
= Select “1-i"from the N-levels drop-down menu
= Select “ID-subject” from the level 1(j) drop-down menu




2.2 Linear multilevel models

= (Click “done”

The specified model includes only one random-term (e) and so far only an
intercept. If your Equations window does not look like this,

=i Equations

speed, = g, + &,
2
e, ~N(0. 5)

click “Estimates” at the bottom of the Equations window. This changes back and
forth between three views:
- the parameter names (e.g. Bo)
- the parameter names in colour coding
- the estimates for each parameter with their Standard Errors in
parenthesis.

Colour coding of the parameters indicates their status:
- red: not yet specified
- blue: specified but not yet estimated
- green: estimation is complete

e C(Click “Estimates” until you see blue numbers in the equation.

e Press “Start” in the upper left corner of the MLwiN Window to start the
estimation procedure

The Estimation is concluded when the numbers turn from blue to green.

Results and Interpretation
5 | Equations
speed, =82.394(0.565) +e,

e,~N(0, 57) o =1394.310(31.905)
-2¥oglikelihood = 50999.090(4994 of 4994 cases in use)

In this simple model, only two parameters are estimated (you can tell, because
there are only two green numbers): the intercept, here simply the overall mean
of Speed, and o the variance of the individual error-term e. The error e
denotes the derivation of each individual (i.e. the cars) from the model, here
simply the variance of the complete sample. Behind each parameter estimate,
its standard error is indicated in parenthesis. To be significant, a parameter
estimate has to be at least twice as large as its standard error. (To be more

i Transport
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exact, the parameter estimate divided by its standard error is z-distributed. A Z-
value of 1.96 indicates a two-tailed probability of 0.05). The third line of the
output shows the deviance of the model (the -2loglikelihood). This value
indicates how well the model fits the data. The smaller it is, the better the model
fits. It is used to compare models. We will come back to that later.

2.2.1.2. An “empty” two-level model

Values measured at the same location can be expected to be more similar to
each other than to values measured at different locations. To include this
hierarchical structure in the model, we will now define a two-level model with the
cars (ID-subject) constituting the first level and the road sites (ID-location)
constituting the second.

Model formulation

First define the dependent variable (Speed) as varying over two random factors,

namely the individual cars (IDsubject) and the location of measurement

(IDlocation)

e Click on the dependent variable and define IDlocation as the second level as
shown below.

x|
¥: I Speed vl
Hlevels : I 2§ Yl
level 2() : {none]] =i
level 10y : [none] -
idlocation
ddidsubject
:Il'-‘l'-il" e
length
lengtheentered
limitcat
limitkm/h 'l

Then define a variance component model by allowing the intercept to vary
randomly across locations.

Click on the intercept

Check the box j(IDlocation)

Press “Done”

Press “Start” to estimate the parameters
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Results and Interpretation

Your Equations window should now look like this.
EIEquaHuns

speeclz.j. =By tey;

By = 68.688(3.267) +u,

1y~ N(0, G,g) G =1358.938(173.029)
g,~N(0, 6)) o =452.704(9.180)
~2¥oglikelihood = 45262.130(4994 of 4994 cazes in uge)

The model has two parts; the first equation corresponds to the individual car
level (Level 1), the second equation to the level of the locations (Level 2).
Instead of an overall intercept Bo, the intercept Bo; varies across locations. The
mean value (68.688), indicated in the second equation, gives the mean speed
across all road sites.

Two error-variances are estimated: 0, is the variance of uy, the location error
term in the second equation. This location error-term u,; indicates the derivation
of each location-intercept from the mean intercept estimated in the second
equation. o, is the variance of e, the individual error term in the first equation.

0°.0, the variation between locations, is highly significant and much larger than
0%, the variation within locations. The variance partition coefficient ( o.o/(
0%,0+ 0%)) is .75 indicating that 75% of the total variance is due to variations
between the level-two units (here the locations).

The deviance is now by a factor 10 smaller than that of the single-level model.
The difference between the two deviances (in this case 464737) is Chi-square
distributed with the difference in numbers of parameters as degrees of freedom
(in this case one, because the two-level model estimates one parameter more
than the one-level model). As a guideline, the expected value for a Chi-squared
distribution is equal to the degrees of freedom, so there is little doubt that
464737 significantly exceeds this value. For a formal check, click on “Data
Manipulation” in the top menu bar and select “Tail Areas”, select “Chi-squared”,
fill the X°-value (464737) and the degrees of freedom (1) in and press
“Calculate’.

To conclude, both the variance partition coefficient and the deviance test both
strongly suggest that a two-level structure describes the data more adequately
than a single-level structure.
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Graphic inspection of the residuals: Level 1

To inspect the residuals of the model,

e Click on Model in the top menu bar

e Select Residuals

ok Residuals ;IEIEI
Settings | Plot= |

— Dutput Colurmng

start autput at |3|:||:|
reziduals ko ||:3|j|:|
IT SD[comparative] of residual to |EBD‘I
standardized[diagnostic] residuals ko ||:3|32
Iv naormal scores of residuals to ||:3|33

W narmal scores of standardised residuals ||:3|j4

M ranks of residuals to IEBDE
I deletion residuals Jcaos
¥ leverage values IESD?
¥ Influsnce values Jcaos

[T Calculate weighted residualz

levvel: I'I:IDsuI:uiectVI Gale | Help |

A

Click “Calc” to calculate the Level 1 residuals

Select “Plot” at the top of the Residuals window

Check radio-button in front of “standardised residual and normal score”
Click “Apply”

std( cons)

I I I 1
=38 28 -1 09 00 0% 18 I8 38

nscore

Graphic inspection of the residuals: Level 2

e Go back to the “Settings” part of the residuals window
e Select “2:IDlocation” from the “level” dropdown list
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e C(Click “Calc” to calculate the Level 2 residuals
e Select “Plot” at the top of the Residuals window
e Click “Apply”

std( cons)

I I I
2 -15 07 00 01 15 2

b
(=]
o

nscore

Normally distributed residuals would result in straight lines. Obviously this is not
the case. A log-transformation (InSpeed) could help normalize the speed
distribution. The transformed value would, however, make the interpretation
more difficult. Therefore, for the sake of clarity of interpretation the non-
transformed speed variable is kept here. As an exercise, the reader is advised,
however, to repeat the analyses presented here with the log-transformed speed
variable (InSpeed) as an exercise.

2.2.1.3. A Two-level variance component model with predictor length

Next, include the length of a car as a predictor for its speed. Rather than
including the absolute length, include LenthCentred, the length of the car
centred to its mean.

Model formulation

Click “Add Term” at the bottom of the Equations window
Select “LengthCentred” from the “Variable” drop-down window
Click “Done”

To estimate this model press “Start”
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Results and Interpretation

F5, | Equations

speed.. = g, +2.303(0.275)lengthCentred_ + .
1 i 0y = g u
Bo; = 68.878(3.236) +uy,

1, ~N(0, 6g) o = 1333.164(169.936)
g, ~N(0, 62) 2 =446478(9.033)

=

~2¥oplikalihood = 45192.310(4994 of 4994 cages in uge)

The intercept Bo; now presents the average speed at LengthCentred = 0 (i.e. for
a car of average length) and the coefficient in front of LengthCentred indicates
its slope: the change in speed per unit of length (here meters). The deviance (-
2*loglikelihood) decreased by 70, i.e. the introduction of car length as a
predictor significantly improved the model.

2.2.1.4. Two-level random intercept, random slope model

To investigate whether the relation between speed and the length of a car was
the same at all measurement locations, the slope of Length will now be allowed
to vary randomly across locations too.

Model formulation

e Click on the Length
e Check the box j (IDlocation)
e Estimate the parameters by clicking on “Start”

Results and Interpretation

speeclz.j. =Byt ﬁlj.leu_gtllf.'eutred!j tey
Py = 68.954(3.239) Ty

Py = 1.692(0.471) + u i

Uy -15.507(17.409) 12.830(3.157)

2,~N(0, 6 o2 =412.745(8.456)
-2*¥aglikelihood = 44901.500(4994 of 4994 cases in use)
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The model now has three parts; the first equation specifies the level of the
individual cars and the other two the level of the locations. Both, the intercept Bo;
and the coefficient of Length B+ are now varying across locations with the
means indicated in the second and third equation.

The location variance has now become a variance-covariance matrix Q,: The
upper left number is o°,, the variance of the intercepts across locations. It
indicates how much the general level of “Speed” varies between groups. The
lower right number is 0°,;, the variance of the coefficient for Length across
locations. It shows to what extent the relation between “Speed” and
“LengthCentered” varies between groups. The lower left number is the
covariance between the two, indicating to what extent there is a relation
between the intercept (i.e. the general level of “Speed”) and the slope (i.e. the
strength of the relation to “LengthCentred”) across locations. While the two
variances can only be positive, the covariance can be positive or negative. A
positive covariance indicates that larger intercepts are associated with larger
slopes. The opposite is true for a negative covariance.

The deviance decreased by 181 as opposed to the variance component model,
indicating that there is indeed substantial variation across locations in the effect
that length has on speed. This also becomes apparent in the fact that the
variance of the slope is significant. However the covariance between slope and
intercept is not, indicating that there is no relation between the average level of
speed (i.e. the intercept) and the length effect (i.e. the slope).

Graphic inspection of the model predictions

To interpret the results it can often help to make use of MLwiNs great graphical
functions. In this case we will plot the predicted speed values for each location.
To do so, we have to save the model-predictions as a new variable first.

e Select “Model” in the top menu bar and click on “Predictions”

e Click on all parameters in the lower half of the appearing dialogue window
(so that they turn from grey to black)

e Select an empty column (e.g. ¢10) for “output from prediction to”

e Click on “Calc”

e Now you can close the “Predictions” window

Project co-financed hy the European Commission, Directorate-General Transport and_ine_r_g'v
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_Ioix

1 LN _ Ea e )
Speed}.}. =l t+ ﬁljlen_gthcentm eclU

variable Len_gthC.‘entereclij.
fixed Ba B

S g
level 2 u 0 Uy
| »
Fonts | Hame | cale | Help | output from prediction to [ =T -
1.0 | S.Eof | | output to | v|

Now we have created a variable that contains the predictions of the model,

which we are going to plot against the length.

Open the graph dialogue by clicking on “Graph” in the top menu bar and by
selecting “Customized Graphs”. Fill in as shown below (all changes have to be
made in the drop-down lists on the right-hand side and appear automatically in

the left-hand side table)

&k Customised graph : display 1, data set 1 ) [l |
Del data set | Help [¥ autosort on x

D1 = | Apply | Labels

¥ X
¢l

Y

e =
| =l T ol e il R ] e el
H

il

—Details for for data set number (dsZ) 1
plot what?]_plot style | position | error bars]|  other

y 10 X I length - |
filter - group I idlocation - |

plot type m

2.

b3

e Press “Apply” to create the graph (You can close the Dialogue Window

then.)

The resulting graph shows separate regression lines for each location.
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160+ .
e
———
1201 e ———m
20 e
I ———
_— e ——
e =
IR e = 0
Pl e ————__ —_—
=
1

0 i i } : } } |
-4.8 -36 -24 -1.2 00 1.2 24 36

The size of 0°y (the intercept-variance across locations) is reflected by
variations in the height of regression lines and the size of o®,; (the slope-
variance across locations) in variation in their steepness. The size of 0, (the
covariance between intercept and slope) would be reflected in the fact that lines
that are on a higher level all-together (larger intercept) tend to be more or less
steep than those at the bottom of the graph. As the covariance is not significant
here, it is however not possible to see such a tendency.

2.2.1.5. Adding a categorical predictor

To demonstrate how a categorical predictor can be included into the model, the
continuous variable LengthCentred will be replaced by a categorical one
(LengthCat) that simply indicates whether the length of a car is below (0) or
above (1) average. The first step is to define this variable as categorical rather
than continuous.

Model formulation

Click on “Data Manipulation” in the top menu bar and select “Names”

Select LengthCat

Click “Categories”

Define the categories as shown below (simply start typing after you clicked
on each field)

Press “Apply”

e Close the “Names” window

ok Set category - |EI|5|
lengthcat j
category |name

0 ==4,3m

1 =4,3m
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¢ Remove LengthCentred by clicking on the term and than on “Delete Term”
¢ Include LengthCat with “Add Term”

= Choose “<=4,3m” as the reference categorie
e Estimate the model

Results and Interpretation

ok Equations

speed!}. = By +4.974(0 .-'55}11}4.3111!}. + g
Bo =65.034(3.284) +uy

1~ N(0, 6g) G = 1333.842(169.939)
2,~N(0, 62 o5 =448924(9.103)
~2¥aglikelihood = 45218.960(4994 of 4994 cages m use)

The coefficient of speedCat indicates that long cars go 4.97 km/h faster than
short ones. The other parameters are very similar to the model in 2.2.1.3 with
length as a continuous predictor.

As the next step the categorical speed effect is allowed to vary randomly across
locations.

Model formulation

Click on the coefficient for SpeedCat
Check “j(IDlocation)”

Click “Done”

Start the estimation by clicking “Start”
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Results and Interpretation

o | Equations

speed!}. =Py T ﬁlj;:}i.imu te,
S =65.007(3.482) +uy,

fi; =5.105(1.333) +u

L

Ky -132.266(55.116) 99.254(24.495)

2;~N(0, 6) o =418.309(8.567)
~2¥oglikelihood = 44963.590(4994 of 4994 cases in use)

Contrary to the model in 2.2.1.4, with Length as a continuous predictor, the
covariance between intercept and slope is now significant. Its negative value
indicates that the difference between long and short cars is smaller at locations
with a high overall speed level (i.e. a large intercept) as compared to locations
with a low overall speed level. The decreased deviance value (45218-44963 =
255) is highly significant indicating that the effect of speed is indeed not
constant across locations.

2.2.1.6. Adding a contextual variable

One of the advantages of multilevel models is the possibility to include
predictors situated at different levels simultaneously in the model. As an
example of a higher level variable, the traffic count for each road site will be
taken up into the model as a contextual predictor (that means it does not vary
across Level 1, but only across higher level units, here the locations). The
variable TrafCountCat takes the value 0 for each road site with fewer than 100
cars passing during observation and 1 for road sites on which more than 100
cars passed.

Model formulation

First go back to model 2.2.1.4, the random slope model with the continuous
length variable:

e Delete LengthCat from the equation

e take up LengthCentered again

¢ make the effect of LengthCentred vary randomly across locations

Now add the context variable
¢ Include TrafCountCat into the equation with “Add Term”.

{7 Transport
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o Select <=100 as the reference category

Results and Interpretation

s | Equations

speed!}. =Py T ﬂlj.IEIIgﬂICEIIU‘Ed!}. +33.166(6 5(_}5}'1:*1(}{}}. te,
By =539.494(3.502) +uy, N
By = 1.654(0.471) + y

My -15.656(15.841) 12.891(3.136)

ey~ N0, 6} ol =412737(3457)
-2¥oglikelihood = 44877.820(4994 of 4994 cages 1n use)

The coefficient for trafficCount, category “>100” indicates that at road sites with
more than 100 cars passing, cars went on average 33.2 km/h faster than on
road sites with fewer than 100 cars passing. The coefficient is highly significant.
Moreover the deviance is reduced by 385 as opposed to the model in 2.2.1.4.
Both indicates that the number of cars passing at a road sites is a good
predictor of speed at that road site.

2.2.1.7. Testing for a cross-level interaction

In order to test whether the context variable trafficCount modifies the length-
effect at the level of the individual cars, the interaction between TrafficCountCat
and LengthCentred is added to the model.

Model formulation

e Click on “Add term” and
¢ Include the interaction between LimitCat and LengthCentred as shown
below
= Select order 1 (this means it is a first-order interaction)
= Choose again <=100 as reference category for
TrafficCountCat
e Estimate the model
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. Specify term - IEIliI
order I 1 vl
variable reference category

Ilengthcentled - l
brafcountca j I «=100 j

QT? ‘ Cancel |

Results and Interpretation

o
speedl}. =Py T ﬁlj.lengthC‘entrecl!}. +33.215(6.534)=100, +-0.077(0 _*)'3}le11_gtl1C.‘e11t1‘ecl.iir>1001.}. te,
By = 59.480(3.506) Tuy

By =1.683(0.596) +u

1y

|:MDJ-] “N(O. Q) O,= [110'345{141 530)

u -15.586(15.870) 12.850(3 151}:|

g, ~N(0. 62) . =412.754(8.436)
-2 ¥oglikelihood = 44877.820(4994 of 4994 cages in use)

The coefficient for the interaction (lengthCentred.>100) is clearly not significant,
as it is much smaller than its standard error in parenthesis. The negligible
weight for this interaction indicates that the length effect at road sites with more
than 100 cars passing were not different from those at road sites with fewer
cars passing. The same message is conveyed by the likelihood that did not
decrease from the model in 2.2.1.6 to the present model, suggesting that
adding the interaction introduces complexity that does not explain anything.

To conclude, the speed of cars varies more between road sites than within
them. Accordingly, speed is affected by a level-1 variable (length) to some
extent, but much more so by a level-2 variable. The effect of length is not
modified by the traffic count.

2.2.1.8. Conclusion

In this chapter it was demonstrated how to extend a linear regression model to
a multilevel structure. It was demonstrated how the variance partition coefficient
and the deviance test can be used to establish the appropriateness of the
multilevel structure and how predictions and residuals at these different levels
can be presented graphically. Moreover, it was explained how effects of level-1
predictors (here the length of a car) can be considered together with predictors
at higher levels (here the traffic count at the measurement location) and how an
interaction between variables at different levels can be investigated.

{7 Transport
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2.2.2 Three level models and more

The research example concerning speed measurement at Belgian road sites is
continued here. Each location of measurement is not only characterised by the
characteristics of the road site in question but also by the Province (Belgian
regions with limited governmental responsibilities) it was situated in. To
investigate whether this hierarchical structure is also represented in the data, a
three level model will be fit.

Data-load

Open the worksheet you created in the previous section or paste the data from
Excel, as described there. Before including a higher level, the data have to be
resorted. In general, the data have to be sorted by all levels included (save the
lowest one, here IDsubject, which is simply indicated by the rows in the data
file). The data imported from Excel are sorted according to the two-level
structure, i.e. by IDlocation and then by IDsubject. In order to include Province
as a third level, they have to be sorted by Province, then IDlocation, and then
IDsubject (note that the order in sorting is opposite to the numbering of the
levels).

Click on “Data Manipulation” in the top menu bar and select “Sort”

Select 3 for “Number of keys to sort on”

Select Province, IDlocation, and IDsubject as key codes

Mark all variables in the “Input columns” list

Click on “Same as input” so that the same columns appear in the “Output
column” list

Click on “Add to Action List”

e C(Click on “Execute”

¢ Close the Sorting Dialogue

N i
—Sort specification ——— —Action list {* = action executed) -
Mumber of keys ta sort on: I 3 j (ol Gt i 12 C@ U
idlocation | IDlocation
- Key code columns idsubject | Dsubject
I province b l speed speed
- - I h I h
Frr— ergh_end
lengthcentr | lengthCentre
I idsubject v l lengthcat  |lengthCAT
province  |province
trafficcour| trafficcount
~Input columns —— [~ Output calumns— trafcourtes trafCourtCat

FEree columns

Same as input
remove Bemaove all

Help  |i Add to Action List i Execute Whda
L
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2.2.2.1. A three-level variance component model

The first three-level model to test would always be the variance component
model in which the intercepts but not the slopes vary across the levels.

Model formulation

Define the dependent variable (Speed) as varying over three random factors,
namely the individual cars (IDsubject), the location of measurement
(IDlocation), and the province.

e C(Click on the dependent variable and define as shown below

x|
¥: Ispeed vl
Hlevels : m
level3dd:  [province  +|
level 26)
level 1) : [wsubject — ~|

done | %

Then define a variance component model by allowing the intercept to vary
randomly across locations and take up LengthCentred as a predictor.

Click on the intercept

Check the box j(IDlocation)

Check the box k(Province)

Press “Done”

Include LengthCentred as a predictor with “Add Term”

Press “Start” to estimate the parameters

Results and Interpretation

b | Equations

spuae«cli}.!,c = Bos T 2.286(0 275}le11gt11C?e1111‘edUk teq

B = T4A489(5.329) +v g, +uy

v~ N(0, 62p) Gog = 218.018(132.889)

ior~N(0, 659) Ghp =990.124(132.623)

ey~ N(0,52) o: =446.467(9.054)

~2¥oglikelihood = 45167.920(4994 of 4994 cages in uge)

The intercept Box now varies across locations and provinces, resulting in the
estimation of three variances: 0°,, is the variance of u., the derivation of each
pronvince’s intercept from the mean intercept. 0°, estimates the variation of the

{7 Transport
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intercept between locations but within the provinces and 0% is the variance of
eji, the individual error term in the first equation.

The deviance of this three-level model as compared to the two-level variance
component model presented in 2.2.1.3 decreased by 24, which is significant
(p<.000). This suggests that the introduction of the three-level structure is
justified. Note, however, that 0°,,, the variance at level 3 (i.e. the variance of the
intercept across provinces), is only marginally significant. (To test this, click on
“Basic Statistics”, select “Tail Areas”, check “Standard Normal Distribution’,
divide the parameter estimate 218 by its standard error 132.9 and fill this value
in the slot next to “Value”. Press calculate. The resulting p value is .051). In
contrast, the level-2 variance, 0°,, and the level-one variance, o° , are both
clearly significant.

Another way to estimate the importance of each level is to calculate the
variance component coefficients for Level 2 (0%,/ 0%e+ 0%+ 0%y = .60) and for

Level 3 (02v0/02e+ uot UZVO =.13).

These results place the third level somewhere in a grey zone: The model
including the third level fits the data better than the two-level model (suggesting
that there is variation between the provinces that make up the third level), but at
the same time, the variance of that third level is not significant. The variance
component coefficients indicate that the largest part of the variation is situated
at the level of the road sites (60%) and only a small part is situated at the level
of the provinces (13%). One can conclude that there is some variation between
provinces but that the variation between the locations is much more important.

2.2.2.2. A three-level model with a random slope at Level 2

From the two-level model in 2.2.1.4 we already know that the effect of car
length varies across locations. Accordingly, the next model to estimate is the
three-level model including a random slope for length at Level 2.

Model formulation

e Click on the Length
e Check the box j (IDlocation)
e Estimate the parameters by clicking on “Start”
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Results and Interpretation

b | Equations

spuae«clij.!,c = Lo T ﬁlj.len_gtll(?mltredlﬁ tey
Pox =74.509(5.291) +v o, Ty

’{31} =1.675(0.470) + 1k

v o~ N0, 6%)) o2 =213.109(131.577)
995.643(133.383)
[11.867(15.426)  12.761(3.118)

“oe| ~N(0. Q) 1 Q,=

Moy

ey~ N(0.G;) o, =412.738(8.457)
-2*oglikelinood = 44877.420(4994 0of 4994 cases in use)

The variance of the intercept across provinces o, is still only marginally
significant (p=.053). For the rest the estimates look very similar to the output of
the two-level model (see section 2.2.1.4). There is a lot of variation in the
intercept across locations, a small but significant amount of variation in the
slope of length across locations and no significant covariation between slope
and intercept. The introduction of a random slope for speed decreased the
deviance by 290, which is highly significant.

2.2.2.3. A fully random three-level model

As a last step, the effect of speed will be allowed to vary randomly not only
across locations but also across provinces.

Model formulation

e Click on the Length
e Check the box k (province)
e Estimate the parameters by clicking on “Start”

" Transport
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Results and interpretation
speecll.jk = Box T ﬁlﬁcleu_gtllCentred!jk tey,
ﬁnﬁc =T4.518(5.341) +v +Mnj-k
o A Eare
B =1.642(0.591) + v, +u

Vi -4.181(10.570) 1.307(1.598)

| ~N(O, Q) : Q= [994-165(133.233)
-11.434(15.298)  11.642(3.121)

L

R

g ~N(0,62) o5 =412.743(8.456)
-2¥oglikelihood = 44876.820(4994 of 4994 cases 1n use)

The results now contain two variance-covariance matrices: Q, and Q,. Q,
indicates the variance and covariance of intercept and slope across provinces
and Q, across locations. The variance-covariance matrix for the locations is still
relatively unchanged as compared to the two-level model (2.2.1.4). For
provinces, the intercept variance is still only marginally significant. The slope
variance and the slope/intercept covariance that have been added to the model
are clearly not significant (to be significant at the .05-level they would have to
exceed twice the size of their standard error, which is clearly not the case). The
conclusion that this last extension of the model was not necessary is confirmed
by the deviance test. Although the present model estimates two extra
parameters, the deviance is exactly the same as that of the simpler model with
the length effect only varying at the level of the locations.

To conclude, the speed of cars has shown to vary substantially across
measurement locations and only to a limited extent across provinces. There is a
relation between the length of a car and its speed and this relation varies across
measurement locations but not across provinces. The introduction of a third
level has proven of limited use. Not only is the variation attributed to this level
very limited, but moreover the results for the other levels were almost exactly
the same as in the two-level models.

2.2.2.4. Conclusion

It has been shown how to extend the two-level models presented in section
2.2.1 to three level models. It has also been demonstrated how to investigate
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whether the additional level improves the model and in the present case it has
been concluded that a two-level model would be sufficient.
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2.3 Discrete response models

2.3.1 Introduction

In the methodology report the section for discrete responses is introduced by
outlining the generalised linear models (GLM) and their hierarchical version, the
multilevel GLM. As there is no empirical example in the introduction of the
GLM, there is no corresponding manual section. In the following sections, the
analysis of general binomial responses (2.3.2), multinomial responses (2.3.3)
and counts (2.3.4) will be presented. All these analyses are instances of the
multilevel GLM.

2.3.2 Binary and general binomial responses
Heike Martensen and Emmanuelle Dupont (IBSR)

The example data used in this section were gathered in a Belgian drink driving
roadside survey. At 413 randomly selected road sites 11,186 drivers were
stopped, asked to perform an alcohol breath test and to answer a number of
questions. The data contain the following variables:

DrinkDriving  Was the alcohol concentration of the driver above the legal limit
of .05 g/I? Yes=1, No=0.

ID_ind Identification number of each driver tested.
ID_loc Identification number of each test location.
Gender Gender of the driver: Male =1, Female =2.
Age A categorical variable: 16-25=1, 26-39=2, 40-54=3, 55+=4.

Previously Has the driver been tested for alcohol at a roadside control
previously? Yes=1, No=0.

Probability How high does the driver estimate the probability of being
stopped for an alcohol control? Very Low=1, Low=2, Medium=3,
High=4, Very High=5.

TrafficCount The average number of cars passing the test site within 15
minutes.

Intensity The number of control officers present divided by TrafficCount.

Data load

e C(Click on “File” in the top menu bar and select “Open worksheet”.
e Open “ALCOHOL.ws”

Two constant variables (“denom” and “cons”) are necessary for building a
model for binary data. To generate these variables,

¢ C(Click on “Data Manipulation” and select “Generate Vector”

Select “Constant Vector” as type of vector

Select an empty output column (e.g. c30)

Fill in the number of cases (11,186) at “Number of Copies”

Fill in “1” at “Value”
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Click “Generate”

Select another empty output column (e.g. c31)

Click “Generate” again

Close the “Generate Vector” dialogue window

Click on “Data Manipulation” and select “Names”

Select the first variable just generated (i.e. c30)

Type “cons” in the field at the top of the window and press return
Name the second variable just generated (i.e. ¢31) “denom”

Model formulation

Define the dependent variable

e C(Click on the “y” and
= Select “DrinkDriving” from the drop-down window as

dependent variable

= Select “2-ij"from the N-levels drop-down window
= Select “ID_loc” from the level 2(j) drop-down window
= Select “ID_ind” from the level 1(i) drop-down window
= Click “done”

e Click on the N in the Distribution statement for DrinkDriving and
» Check “Binomial”
» In the appearing link functions, leave “logit” checked
» Click “Done”

e Click on the red nj in the distribution statement for DrinkDriving
= Select “denom” in the variable drop down list

A binomial distribution is characterised by the proportion m; and the
denominator n; stating the number of instances on which the proportion is
based. In the present study the denominator is a constant 1, meaning that the
data are binary. This and the choice of the “logit” function as a link function
make the model a logistic regression model.

Build a two-level random intercept model
e C(Click “Add Term” and select “Cons” from the variable drop down list
e C(Click on “cons” and check “j(id_loc)”

In the General Linear Model notation, the intercept is not automatically included.
To do so, a constant variable must be included as a predictor.

Add predictors

e C(Click on “Add Term”, select “TrafficCount” as a predictor from the variable
drop down list

e C(Click on “Add Term”, select “Intensity” as a predictor

e C(Click on “Add Term”, select “Gender” as a predictor, chose “Male” as
reference category
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e C(Click on “Add Term”, select “Previously” as a predictor, select “not tested
previously” as reference category

e C(Click on “Add Term”, select “Probability” as a predictor; select “very low” as
reference category

e C(Click on “Add Term”, select “Previously” as a predictor, select “Age16-25” as
reference category

Estimation

In the binomial distribution it is assumed that the variance is equal to the odds-

ratio, m; (1- ;). To test this assumption, first estimate a model assuming an

extra-Binomial distribution, where the variance is left free to vary.

e Click on “Notation” at the bottom of the “Equations” window again

e Select “extra Binomial” in the top row

e Leave the other two options at their default value (1*' order linearization and
MQL as estimation type)

e C(Click “Done”

e Press “Start” to start the estimation procedure.

Once the estimation procedure has converged (i.e. all blue numbers turned

green)

e Click on “Notation” at the bottom of the “Equations” window again

Select “2™ order” under “Linearization”

Select “PQL” under “Estimation type”

Press “Done”

Press “More” to continue the estimation

In the estimation procedure, the nonlinear link function is linearized by
approximating it with a Taylor Series expansion. A Taylor series consists of an
infinite number of terms and the more of them are used, the closer the
approximation. The first choice is whether only the first (1° order linearization)
or the first two are used (2™ order linearization). The other choice concerns the
values that the Taylor series expansion is based on: During each iteration the
Taylor series is calculated on the basis of the currently estimated parameter
values. In the Marginal Quasi Likelihood method (MQL) only the fixed
parameters are included, in the Penalized Quasi Liklihood method (PQL) the
residuals are included as well. Generally speaking, 2™ order linearization and
PQL are more accurate but computationally intensive and more prone to
convergence problems. The 1°' order MQL estimates on the other hand are
known to be biased downwards. It is therefore suggested to use 1°' order
linearization and MQL to get rough starting values on which the final estimation
using 2" order linearization and PQL is based. For more information see
Goldstein (2003) or Hox (2002). With these methods, slight variations in the
estimated values are to be expected.
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The first interest is to evaluate whether the assumption of a binomial distribution
holds. In that case the theoretically expected value for the variance would be 1.
At the bottom of the Equations window, the estimated variance is indicated with
0.711. As this is very close to the theoretically expected value, it is probably
safe to estimate the model under the more restrictive assumption of a Binomial
distribution (rather than an extra-Binomial one).

Estimate the model again assuming a Binomial distribution.

e Click on “Notation” at the bottom of the “Equations” window again

e Click on “Use Defaults” (i.e., Binomial distribution, 1* order linearization and
MQL as estimation type)

e Click “Done”

e Press “Start” to start the estimation procedure.

Once the estimation procedure has converged (i.e. all blue numbers turned

green)

e Click on “Notation” at the bottom of the “Equations” window again

Select “2™ order” under “Linearization”

Select “PQL” under estimation type

Press “Done”

Press “More” to continue the estimation
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Results and interpretation
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The parameter estimates of the Binomial model are very similar to that of the
extra-Binomial one, confirming that the Binomial distribution assumptions hold
for the present analysis. The interpretation will therefore be based on this last
model.

Before interpreting the coefficients, their significance has to be tested. For
categorical variables with several levels (e.g. probability) there is more than one
predictor (here 4: low, medium, high, and very high) which have to be tested
jointly. This is done with the Multivariate Wald test. Single coefficients for
continuous predictor variables (e.g. TrafficCount) or those with only two levels
(e.g. Gender) can be tested with the Z-test.

To conduct the Z-test:

Divide the coefficients by their standard errors

Click on “Basic Statistics” in the top menu bar and select “Tail Areas”
Check “Standard Normal distribution”

Fill in the result of the division

Click “Calc”

To conduct a Multivariate Wald test (joint Chi-square test)

e Click on “Model” in the top menu bar and select “Intervals and tests”

e Check “fixed” at the bottom of the appearing dialogue window

e Type a 1 in front of every coefficient that you want to test jointly (e.g. those
for “low probability”, “medium probability”, “high probability”, and “very high
probability”)

Click on “Calc”

Click on “Basic Statistics” in the top menu bar and select “Tail Areas”

Check “Chi Squared”

Fill in the resulting Chi-square value from the “Intervals and tests” dialogue
Click “Calc”

As can be seen in Table 2.3.1, all predictor variables are significant.
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Predictor Coefficient SE V4 p(2) Chi2 d.f. p(chi2) gCoeticient
TrafficCount -0.002 0.0001 -20.00 0.000 0.998
Intensity 0.898 0.379 2.37 0.009 2.455
Female -1.374  0.206 -6.67 0.000 0.253
Previously 0.407 0.14 2.91 0.002 1.502
Prob. Low 0.536 0.166 25.46 4 0.000 1.709
Prob. Medium 0.743 0.168 2.102
Prob. High 0.313 0.277 1.368
Prob. Very high 1.431 0.289 4.183
Age26-39 0.709 0.241 18.17 3 0.000 2.032
Age40-54 1.312 0.233 3.714
Age55+ 0.859 0.271 2.361

Table 2.3.1: Results of single and joint tests for predictors

One way to interpret the coefficients is to take their exponentials, which is
presented in the right-most column of Table 2.3.1. For a one unit increase in the
predictor, the odds of the dependent variable have to be multiplied by the
exponential of the coefficient.

The odds of an event are calculated as the number of events divided by the
number of non-events. For example, on average 3 drivers in every 100 are
drunk, so the odds for any randomly chosen car of having a drunk driver are:
3/97 = 0.031. The odds for an event that is as likely to happen as not (p=0.5)
are 1. While odds have useful mathematical properties, they can produce
counterintuitive results because they are similar to probabilities in the lower
ranges (the odds of p=.01 are .0101) but not at all in the higher ranges (the
odds of p=.75 are 3 and those of p=.99 are 99). As an example: an 80%
probability is four times the chance of a 20% probability but the odds are 16
times higher.

Another way to interpret the coefficients, is to calculate the probability for
different values of the predictor. The probability for any chosen value of a
predictor x is given by:

1

7= (2.3.1)
I+ exp(_(ﬂo + ﬂlxi ))

In Table 2.3.2, the probability for DrinkDriving is given for each predictor taking
the value of 1, while all other predictors are 0. In the third column, this
probability is divided by the probability at the intercept (i.e. for all predictors
being zero), indicating the multiplicative factor on the probability for a one-unit
increase. This factor is compared to the exponential of the coefficient, the
multiplicative factor on the odds. As can be seen, the two right-most columns
are exactly the same, indicating that with such a small proportion of drink
driving, the difference between probabilities and odds are negligible.

The interpretation of each coefficient is described elaborately in section 2.3.2 of
the methodology report (D7.4) and will not be fully repeated here. As an
example we
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coefficient

Predictor Coefficient  ;\x=1 (m;;\x=0) / (1;;\x=1) e
Intercept -4.746 0.009
TrafficCount -0.002 0.009 0.998 0.998
Intensity 0.9 0.021 2.460 2.460
Female -1.374 0.002 0.253 0.253
Previously 0.407 0.013 1.502 1.502
Prob. Low 0.536 0.015 1.709 1.709
Prob. Medium 0.743 0.018 2.102 2.102
Prob. High 0.313 0.012 1.368 1.368
Prob. Very high 1.431 0.036 4.183 4.183
Age26-39 0.709 0.018 2.032 2.032
Aged0-54 1.312 0.032 3.714 3.714
_Age55+ 0.859 0.021 2.361 2.361

Table 2.3.2: Probability of DrinkDriving for each predictor at x=0 and x=1.

will describe the interpretation of one continuous variable (TrafficCount) and of
a categorical one (Age).

TrafficCount has a negative weight, indicating that for each car passing, the
proportion of drink driving decreases. The exponential of the coefficient (.998)
indicates that for the decrease in one car the odds have to be multiplied by
.998, i.e. decrease by 0.2%. Note that the relation between predictor and
dependent variable is not linear. To establish the decrease in odds for 100 cars
passing, one has to multiply the coefficient by 100 before taking the exponential
which results in 0.819 or an 18% decrease.

The coefficients for the age categories 26-39, 40-54, and 55+ are all positive
and thus result in exponential coefficients larger than 1. This means all age
groups show a higher incidence of drink driving that the youngest drivers (16-
25) who constitute the reference category. Most notably, in the age-group of 40-
54 year olds the exponential coefficient amounts to 3.714, which indicates that
drink driving in this age group occurs almost four times as often as among the
young drivers.

The joint chi-square test reported above indicates that there is a difference
between the age-groups somewhere. One might also want to test, whether two
particular age groups differ from each other significantly. To test whether the
40-54 year olds differ from the 55+ year olds, follow the same procedure as
described above, but put 1 in front of “age 40-54” and -1 in front of “age 55+".
The difference between those two age groups is significant (X?(1)=5.58,
p=.018). We can therefore conclude that the 40-54 year olds drink and drive
significantly more often than even the group of people older than 55+ who
feature the second highest rate of drink driving.

2.3.2.1. Conclusion

A multilevel version of a logistic regression analysis was presented. Special
characteristics of the estimation procedure for binary variables were discussed.
The binomial model was compared to the extra-binomial model and it was
concluded that the binomial distribution holds. It was demonstrated how to use
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the joint Wald test to test the significance of categorical variables and shown
how the coefficients can be interpreted either by transforming them into odds
ratios or calculating the probability for specific values of the predictors.
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Heike Martensen and Emmanuelle Dupont (IBSR)

The example data used in this section are the Belgian drink driving roadside
survey data also used in section 2.3.2. The data contain the same variables as
in 2.3.2, with the exception of the dependent variable. Rather than DrinkDriving
(a dichotomous variable) in this chapter a variable with three possible
outcomes, “Breathtest” will be modelled:

Breathtest 1 = Safe; blood-alcohol concentration (BAC) is below 0.05 mg/l.
2 = Alarm; driver's BAC is between 0.05 and 0.08 mg/l. 3 =
Positive; driver's BAC is above 0.08 mg/I.

ID_ind Identification number of each driver tested.
ID_loc Identification number of each test location.
Gender Gender of the driver: Male =1, Female =2.
Age A categorical variable: 16-25=1, 26-39=2, 40-54=3, 55+=4.

Categorical responses can be perceived in two ways: They can either form an
ordered series that is based on some underlying continuous variable or they
consist of different categories that are not systematically related. In the present
case, the three categories (“safe”, “alarm”, “positive”) are clearly related to the
underlying variable blood alcohol concentration (BAC) and will therefore be
modelled in an ordered proportional odds model. At the end of this section, the
unordered category model will be presented, so that the reader can see how
such a model is fitted and how the results differ from an ordered model.

Data load

Click on “File” in the top menu bar and select “Open worksheet”.
Open “ALCOHOL.ws”

A constant (“cons”) is necessary for building a model for categorical data. To
generate this variable (unless you have done it and saved it in section 2.3.2),
¢ C(Click on “Data Manipulation” and select “Generate Vector”

Select “Constant Vector” as type of vector

Select an empty output column (e.g. c30)

Fill in the number of cases (11,186) at “Number of Copies”

Fill in “1” at “Value”

Click “Generate”

Close the “Generate Vector” dialogue window

Click on “Data Manipulation” and select “Names”

Select the first variable just generated (i.e. ¢30)

Type “cons” in the field at the top of the window and press return

2.3.3.1. Ordered proportional odds: empty single level model
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Model formulation

Define the dependent variable
e C(Click on the “y” and

= Select “Breathtest” from the drop-down window as dependent
variable
Select “2-ij"from the N-levels drop-down menu
Select “ID_loc” from the level 2(j) drop-down menu
Select “ID_ind” from the level 1(i) drop-down menu
Click “Done”
e Click on the N in the Distribution statement for Breathtest and

= Check “Multinomial”

* In the appearing window, leave “logit” checked

= Select “Ordered proportional odds”

= Leave “safe” as reference category

= (Click “Done”

bl'eatlltest!j ~ N(XB, )

LT

o x
bl'eatlltest]j | &. Response kype =10 x|

— Select distribution

[] Poizzon ;l
[] -we Binomial

[ Homal |
-

— Select link function %

[] probit
[ cloglog

— Multinomial options

[ Unordered
Ordered proportional odds

ref categany : |safe j

Dione | Cancel |

¢ Click on the red nj in the distribution statement for Breathtest
= Select “cons” in the variable drop down list

When a response variable is defined as multinomial, MLwiN automatically
generates a number of new variables. To view these variables select “Data
Manipulation” in the top menu bar, click “view or edit data”, click on “view” and

AT

select “resp”, “resp_indicator”, and “id_ind_long”. Click “Ok”.
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goto line |1 view | Help | Font |

resp{ 22372) |resp_inﬂicat0r{ 2| id_ind_lono{ 223i| cons.{==alarm}{ : cons.{>=positive}| Q
487 0 (==alarmj} 276 1 0
488| 0 (==positive) 276 0 1
489| 0 {==alarm} 277 1 0
490| 0 (==positive) 277 0 1
491 1 (==alarm} 278 1 0
4921 1 (==positive) 278 0 1
493 0 (==alarmj} 279 1 0
494 0 (==positive)} 279 0 1
495 0 (==alarmy) 280 1 0
496| 0 (==positive) 280 0 1
4971 0 (==alarm} 281 1 0
498 0 (==positive) 281 0 1
499 0 (==alarmj} 282 1 0
500| 0 (==positive)} 282 0 1
501 1 (==alarmj} 283 1 0
502 0 (==positive) 283 0 1 -

A new response variable has been made (resp), which indicates for each
individual for each response category, whether this category was the given
response (1) or not (0). In the present case we have three categories. Note
however, that the data can be fully described with two independent categories.
If someone was neither in the category “alarm” nor in ‘positive”, we know for
sure that he is in “safe”. Therefore the variable ‘resp” contains for each
individual two values indicating whether or not the response has been “alarm” or
‘positive”, respectively.

The variable “resp_indicator” indicates which response the value in the variable
‘resp” applies to. There are two possible values: (>=alarm) or (>=positive).
These labels including the “greater-than or equal” relation are automatically
generated by MLwiN. They are due to the fact that the estimated model is an
ordered category model in which it is assumed that ‘positive” is greater than
‘alarm” and “alarm” is greater than “safe”. Therefore, an individual categorized
as (>=positive) is automatically also categorized as (>=alarm). The reader can
verify this by checking the values in “resp”. The majority of the individuals have
two zeros, indicating that they were in the safe-category. There are some
individuals having a 1 at (>=alarm) and a zero at (>=positive), who were in the
alarm category. Note however, that all individuals with a 1 at (>=positive) also
have a 1 at (>=alarm). It is easy to understand this when re-translating the
category titles to the underlying BAC values: Everybody who is in the positive
category (i.e. his BAC was >=0.08) also has a BAC >=0.05 (which defines the
alarm category).

A multinomial model has an intercept for each independent category (i.e. one
for (>=alarm) and one for (>=positive). To include these intercepts into the
model

e C(Click “Add Term” and select “Cons” from the variable drop down list

e Click “add Separate coefficients”
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¢ C(Click “Done”

Estimation

e Click on “Nonlinear” at the bottom of the Equations window

e Select “Use defaults” or check “Multinomial”, “1' order’-Linearisation, and
“MQL!!

e Click “Done”

A couple of remarks about the estimation procedure are necessary. At the time
of writing this manual, the estimation of multinomial models proved to be
problematic. As described in the previous section on binomial data (2.3.2), it is
principally advised to use 2™ order PQL estimates for good unbiased results.
However, for the multinomial model these estimates did not converge, leaving
us with 1°! order MQL estimates, which are more stable but downwardly biased.
It was decided to include this chapter nevertheless, because due to the rapid
development in estimation techniques (see also section 2.7 in the Methodology
report) these problems might be solved soon. Because the estimation is
problematic at the moment, MLwiN gives a lot of numerical warnings while
running. As advised in the MLwiN manual (Rasbash et al., 2004), we suggest to
suppress them by clicking “Estimation control” and checking “suppress numeric
warnings”.

&k Estimation control ) [m] B3
IGLSRIGLS:! I MCHC | IGLSRIGLS bhootstrap 1

Method
’1‘: IGLS " RIGLS Convergence tolerance[10E =) I a

I_%suppress HLIMENC Warhings — Allow negative vanances
At level 1[resp_indicator] : NO

Help | Done |

e Then press “Start” the estimate the model
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Results and interpretation
o | Equations

resp, ~ Ordered Ix-Iultilmmial(cmlsj..

—
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The only thing this empty model does is to estimate an intercept for each of the

categories. As indicated in the methodology report, these intercepts can be

translated into probabilities by filling them into equation 2.3.4 of the

methodology report.
1

1+ exp— (parameter)

(2.3.4)

Yy

This way we receive 0.02 as probability to be in category ‘positive” (i.e. BAC
>=.08) and 0.03 to be in category “alarm” or “positive” (i.e. BAC >=.05). Note
that no variance is estimated, as in the multinomial distribution the variance is
determined exclusively by the probability of belonging to a particular category
(see section 2.3.3 in the methodology report).

Each component of the model equations is double indexed by ij, indicating that
we have a two-level structure. This might be confusing, because conceptually,
this model has only one level (the individuals). Structurally, the individuals are
the second level and therefore indexed j here. The first level, indexed by i, is
defined by the variable “resp_indicator” that indicates which of two categories
((>=alarm) or (>=positive)) the response variable refers to.

2.3.3.2. Ordered proportional odds: empty two-level model

In the previous section on binary responses (2.3.2), it had been demonstrated
that the probability of drink driving varied across measurement locations. A
model that includes a location-level is conceptually a two-level model. To
implement a two-level multinomial model, however, we will build a structural
three-level model (the first level being reserved for the response indicator).

Model formulation

Because the three response categories are assumed to have one underlying
variable (in this case the BAC) it is assumed that random variation across the
locations is the same for each response category. To create this structure, it is
necessary to include another constant into the model with a common coefficient
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(as opposed to the constant that is already included that has separate
coefficients for (>=alarm) and (>=positive)).

e Click on “Add Term” at the bottom of the Equations window
e Select “cons” from the variable drop down list
e (Click on “Add common coefficient”
e Select “Include all”
e (Click “Done”
JRE=TE] e

m [ [>=alarm] 10l x|
. sl Include all | Pﬁune | cancel | o
€ |E i
. add Seperate | add Common Cancel

coefficients coefficient =

This common coefficient must be allowed to vary randomly across locations.
However, because we already have intercepts we do not want the newly
included constant to function as a fixed factor. Therefore

Click on the constant just added (cons.23)

Check “k(id_loc_long)”

Uncheck “Fixed Parameter”

Click “Done”

x
I cons. 23 - I

| 1] Fixed Parameter

delete Term |
Done |

Press “Start to estimate the model.
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Results
s | Equations

resp,; ~ Ordered I\-Iultiumnial(cmlsj.k. f"h;;-;c)
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As can be seen in the triple index ijk, structurally this is a three level model.
Conceptually however, this is a two-level model. The second conceptual level is
that of the locations. It is implemented by the joint intercept hy . This joint
intercept has been defined as random factor only, but not as fixed factor.
Consequently there is no mean estimated for it, only its variance Q, , which
indicates how the probability to be either in category “alarm” or in category
‘positive” varies across locations. Although the present estimations should be
interpreted with caution, we can note that the variation Q, is quite large
compared to its standard error, making it very likely that there is substantial
variation across locations in the probability to have a BAC above .05 or above
.08. This is also in line with the results from the binary model in section 2.3.2.

2.3.3.3. Ordered proportional odds: the two-level model with predictors

The next step is to include predictors into the multinomial model. In the ordered
model, predictors are usually assumed to apply to all categories in the same
way (i.e., if a particular variables is thought to affect the probability to have a
BAC above .05 it is also thought to affect the probability to have a BAC above
.08). Therefore only one slope is estimated for each predictor. We will take up
the variables “gender” and “age”.

Model formulation

e Click on “Add Term” at the bottom of the Equations window
e Select “gender” from the variable drop down list
e Select “male” as reference category
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e (Click on “Add common coefficient”
e Select “Include all”

e Click “Done”
=T reern
m [+ [#=alarm)] 10l x|
ord e )
- ¥ {[>=positive}
. el Include all | Pﬁune | cancel | v
€ |E W

coefficients coefficient

¢ 2dd Seperate | add Common Cancel |

Results and interpretation

5 | Equations

resp,; ~ Ordered I\-Iultiumuial(cmmj.k. g!ﬁ)

Ve = Ty Yok~ Ay T Tams Vg = 1

lq:rgit(;rzj.k) =-3.068(0 071‘}:)(:43115.(iiigalmm)ﬂk + sz.k
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The common part hi is now defined by the random variation over the locations
(vakcons.23) but also by the effect of gender. The coefficient for female.23j is
negative, indicating that women, as compared to men who form the base line
category, have a lower probability to be in categories “alarm” or “positive”.
Accordingly the intercepts cons.(>=alarm)j and cons.(>=positive)jx have
increased (i.e., they have lower negative values) as compared to the model
without predictors. These intercepts now represent the probabilities for men
instead of representing the probabilities for the whole group.

Now include the predictor “age”. This is a categorical variable representing four
age-categories (16-25, 26-39, 40-54, 55+).

e Click on “Add Term” at the bottom of the Equations window
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Select “age” from the variable drop down list
Select “age 16-25” as reference category
Click on “Add common coefficient”

Select “Include all”

Click “Done”

Click “Start” to estimate the model

Results and interpretation

resp; ~ Ordered I\-Iultinmniﬂl(cmlsjk. f"h;;c)

Py = Taws i = A T Ay =1

lngit(;_fzj.k) =-3.762(0.226 :PCL‘I-IIS.(:3:’:3131‘111)!}.36 + kﬁc

logit( ,’-’3;;;) =-4.187(0.229 }cmls.(iircljﬁsitix-'e)ij.k + kﬁc
x =-1.010(0.226)female.23, + (0.513(0.254)age 26-39.23, + 1.155(0.241)age 40-54.23, +
i Ji = Tk = Tk

0.527(0.278)age 55—1—.23}.;5 +v . cons 23
["” 3::] ~NO Q) 0,7 [{J 933(0 185}]

COV(Y o) =rnl -pp)/eons,  s==r

The coefficients for the various age-categories are positive, indicating that all
age-categories listed have a higher probability of being in “alarm” or “positive”
than the youngest (16-25) that forms the reference category. The highest
coefficient is estimated for drivers aged 40-54, indicating that this group is
especially at risk of drink driving.

2.3.3.4. Unordered categories: the two-level model with predictors

In the present example we clearly have a variable (the BAC) underlying the
response categories, making the ordered proportional odds model likely to be
the appropriate. In this way, it was assumed that both probabilities (of having a
BAC >.05 and of having a BAC >.08) vary in the same way across locations and
that the effects of gender and age on both probabilities are the same. However,
even if both probabilities are related to one underlying variable, they might
nevertheless show different random or fixed effects. This can be investigated in
an unordered category model, which assumes no relation between the different
categories to start with. To switch from an ordered to an unordered multinomial
model in MLwiN, one has to build a new model from the start.

Click on “Clear” at the bottom of the Equations window
e C(Click on the “y” and
= Select “Breathtest” from the drop-down menu as dependent
variable
= Select “2-ij"from the N-levels drop-down menu
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= Select “ID_loc” from the level 2(j) drop-down menu
= Select “ID_ind” from the level 1(i) drop-down menu
=  Click “Done”
Click on the N in the Distribution statement for Breathtest and
= Check “Multinomial”
In the appearing window, leave “logit” checked
Select “Unorderd”
Leave “safe” as reference category
Click “Done”
Click “Add Term” and select “Cons” from the variable drop down list
Click “add Separate coefficients”
Click “Done”

To include the location-level into the model, one has to let the intercept vary
randomly across locations. In the ordered model, this was done for a joint
intercept. In the unordered model, we simply let the intercepts that already
define the categories vary across locations.

Click on “cons.alarm;”

Check “k(id_loc_long)

Click “Done”

Do the same with “cons.positive;”

In the unordered model, predictors are not assumed to have the same effect on
all categories. Therefore separate coefficients have to be estimated for each
category.

Click on “Add Term” at the bottom of the Equations window

Select “gender” from the variable drop down list

Select “male” as reference category

Click on “Add separate coefficients”

Click “Done”

Repeat the procedure to include predictor “age’
o Select “age16-25” as reference category

Click “Start” to estimate the model
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Results and interpretation

—oi

respy, ~ Multinomial(cons,, ;)

log( 7/ 71) = Borcons.alarny,, +-1.053(0.249 female.alarmy, +0.774(0.344 )age 26-39.alarmy, +
1.019(0.339)age 40'54'*‘13““4}:; +0.712(0.375)age 554‘.3131‘111%

Bor =-4927(0.314) +v,

log( 73/ 71) = Precons.positive,, +-1.608(0.220)female.positive,, +0.522(0.251)age 26-39.positive,; +
1.185(0.238)age 40-54.1msitix-'ejk +0.590(0.271 )age 55+.p0-sitix-'eu.k

J_
By =-4.158(0.226) +v,,

Vo | ~N(0, Q) Q= (0.651(0.236)
v 1.056(0.160) 0.962(0.180)

1k

Ccr\.-'(ysjk, yg.k) = - Mg T/ COIS, - 8 =1, ,-—;sjk(l - ,-;g.k).-'cmlsjk BRI

In the unordered category model for three categories, two contrasts function as
dependent variables: The contrast between “safe” (the reference category) and
“alarm”, and the contrast between “safe” and “positive”. The values that are
predicted by the model are the log-odds of these contrasts (“alarm-
safe”:log(tay/ 11) and “positive-safe”: log(msi/ 1m1jx)). For each of these log
odds, there is a full prediction model including fixed factors (age and gender)
and a random factor (the location effects vgx and vy). The variation across
locations is given by Q, which is now a matrix containing the variation of the
contrast “alarm-safe” across locations (upper left), the variation of the contrast
“positive-safe” across locations (lower right), and the covariance (lower left
corner). We can see that there is substantial covariance, indicating that for
locations with a large contrast “alarm-safe”, the contrast “positive-safe” is also
large. The assumption that the probabilities to be in “alarm” and to be in
“positive” vary across locations in the same way, lay at the basis of assuming a
common random factor in the ordered model. The large covariance in the
present model supports this assumption.

The coefficients for gender and age show the same pattern for both contrasts:
The negative coefficients for “female” indicate that men have a higher
probability to be in “alarm” or “positive” respectively as compared to “safe”. The
positive coefficients for the age categories listed indicate that drivers in those
age categories have higher probabilities to be in “alarm” or “positive” than the
youngest drivers. And for both contrasts it is the category of 40-54 year olds
that received the highest coefficient.

Although both sets of coefficients show exactly the same pattern, one might
note that the coefficients for the contrast “positive-safe” all have somewhat
higher values than those for the contrast “alarm-safe”. This would indicate that
being a man between 40 and 54 years is even a better predictor for being in
category “positive” (i.e. having a BAC of .08 or higher) than for being in category
“alarm” (i.e., .05<BAC<.08). It is interesting to test whether this difference is
significant. To do so for the two coefficients for “female”:
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Click on “Model” in the top-menu bar
Select “Intervals and tests”

Check the radio-button in front of “fixed”
Type “1” behind “female.alarm”

Type “-1” behind “female.positive”

Click on “Calc”

The resulting Chi-square value of 2.792 with 2 degrees of freedom corresponds
to a probability of .095. We can conclude that the effect of being a woman does
not differ significantly between the contrasts “alarm-safe” and “positive-safe”. As
for the other coefficients the differences between both contrasts are smaller
than the one for the gender-coefficients, we can conclude that there is no
systematic difference between the effects of age and gender on the categories
“alarm” and “positive” respectively. Again, the results of the unordered model
support the assumptions at the basis of the ordered proportional odds model.

2.3.3.5. Conclusion

It has been shown how categorical responses can be analysed in a multilevel
multinomial model. Two different versions were presented. (1) The ordered
proportional odds model is based on the assumptions that the response
categories result from an underlying continuous variable and that fixed and
random effects therefore have the same shape for outcome. (2) The unordered
categories model does not assume any systematic relation between the
different outcomes. Independent models are estimated for each outcome (in
contrast to the reference category). It was shown that even for categorical data
that are expected to have a common underlying variable it can be interesting to
analyse them in an unordered categorical model, as comparing the independent
prediction models for each category can indicate whether an ordered
proportional odds model is appropriate.
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George Yannis, Eleonora Papadimitriou and Constantinos Antoniou (NTUA)

In this section, an example for fitting Poisson multilevel models is presented
using the MLwinN 2.01 software. The example concerns an investigation of the
regional effect of speeding and drinking-and-driving enforcement on the number
of road accidents in Greece. The theoretical background, models fit and results
were discussed in section 2.3.4 of the Methodology Report.

The dataset includes accidents data, police enforcement data as well as other
demographic data for the 49 counties and 12 regions of Greece for the period
1998-2002. More specifically, the variables and values used are summarized in
the following Table:

Region | 1-12 regions of Greece

County | 1-49 counties of Greece

Accs The number of accidents of each county

alcohol = The number of alcohol controls of each county (1000 alcohol controls)

Speed | The number of speed infringements of each county (1000 speed infringements)

logepop | The natural logarithm of the population of each county

Natroad = The proportion of National Roads of the road network of each county

Vehown | The vehicle ownership of each county (vehicles per 1000 inhabitants)

Cons The constant term (1)

Open the dataset PoissonManualData3.ws using the Open Worksheet option
from the Files menu. Opening the Names window from the Data Manipulation
menu gives the following:

1 [region | | Refresh | Categories | Help |
Hame | n | missing | min | max o

1| region 245 0 1 12

2 | county 245 0 1 50

3 | accs 245 1] 15 TH

4 | aleohol 245 1] -6.32 T2.TM

5 | speed 245 0 -3.472 25.426

& | logepop 245 0 9.96 12.692

T | natroad 245 1] -0.243 361

& | vehown 245 1] -0.182 h159

4 | cons 245 1] 1 1

10 | C10 0 1] 0 (1

11 | C11 0 0 0 (1

12 | C12 0 0 0 (1

13 | C13 0 1] 0 (1

14 | C14 0 1] 0 (1

15 | C15 0 0 0 (1

16 | C16 0 0 0 (1

17 | CIT 0 0 0 1] F
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The response variable (accs) in this dataset is the number (counts) of road
accidents in various counties of Greece during the period 1998 to 2002. The
data were collected in 49 counties’; these counties are included into 12 regions,
giving two levels of data. As explained in the Methodology Report (section
2.3.4), count data are constrained to be non-negative, therefore we would prefer
to model the logarithms of the counts. We will therefore fit a Poisson model to
the count data using a log link function, which can be specified through the
software.

In order to work with the accident rates rather than the accident counts, we use
an additional parameter known as an offset. The variable logepop reflects the
expected number of accidents in each county, which is considered to be
proportional to the population of each county, and will be used to create an
offset variable. It should be noted that, as a log link function is used for the
response variable, the offset term should also be transformed accordingly. In
this dataset no transformation is required, as the variable logepop already
corresponds to the natural logarithm of the population of each county. However,
the transformation could be carried out using the Command Interface option
from the Data Manipulation menu.

The variables alcohol, speed, natroad and vehown also concern each county
and shall be used as explanatory variables. These variables have been
centered around their mean, as recommended by the MLwiN users manual, in
order to avoid computational instabilities.

We will start by fitting a simple (single level) model and then proceed to
multilevel structure.

2.3.4.1. A single-level Poisson model

In order to specify a simple (single level) model in MLwiN:

= Open the Equations window from the Model menu and click on 'y

= In the Y variable window, select accs from the y: drop down list, select i-1
from the N levels: drop down list and county from the level 1(i) drop down list,
and click Done.

! The Athens and Thessalonica metropolitan areas, where a
disproportionally high number of accidents and police controls are observed,
were not included in the dataset.
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X

. Y variable _ |

¥ | AcCCS

Lo

H levels : | 1-i
level 1ii) :
done

= Click on the N (QX, B) that appears on the first line of the Equations window,
select Poisson from the available distributions and click Done.

L]

. Response type |Z| |E| le

Select diztribution

-vi Binomial
Marmal

|1

Link type iz zet to LOG

Done Cancel

Click on the (1) that appears on the second line of the Equations window,
select logepop as offset term and click Done.

i specify offset E]E]

[Done

Click on the Add Term button of the Equations window and add cons, alcohol
and speed to the model. By clicking on each of the terms in the Equations
window, we can see that these are entered by default as fixed parameters.

. X variable [g

|
o I

Fixed Parameter

delete Term

Done

= Click on the Estimates button of the Equations window and the parameters to
be estimated will be highlighted in blue. The Equations window will now look

as follows:
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=% Equations

accs, ~ Poisson( ;)

log( ) = logepop, + gycons + g3 alcohol, + 3;speed,

var(aces,| ) = 7 |

Hame | Fonts | + | - | Add Term | Estimates | Honlinear | Clear | Hotation

It should be noted that, the last line in the Equations window reflects the
Poisson assumption that the variance of the response variable is equal to the
mean ;.

= In order to set the estimation procedure, click on the Nonlinear button of the
Equations window select distributional assumptions Poisson, linearization 1%
order and estimation type MQL (Marginal Quasi Likelihood) and click Done.

. Monlinear Estimation E]@

Distributional assurnptions

* Poizzon " eutra Poiszon

Linearization

2nd
{*
1zt order { Order

E ztimation type
f» MOL i POL

Ilze Defaults

Dane ‘

= |n order to run the model, click Start on the toolbar of the main window. We
then obtain the following results:

=¥ Equations

accs, ~ Poisson(7,)
log(z) = logepop, +-6.450(0.005 )cons +-0.015(0.001 jalcohol;, +-0.010({0.001)speed,

var(aces;|z) = 7

Hame | Fonts | + - A(I(IIerm|§stimates|Nonlinear Clear Hotation | Responses| Help |
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These results are intuitive (i.e. an increase in speeding and drinking-and-driving
controls results in a reduction of road accidents). In the next section, we will see
how this effect may vary when adding more structure to the data.

2.3.4.2. A two-level Poisson model

We will now fit a two-level model, in order to investigate the regional variation of
the effect of enforcement on the number of road accidents. We shall start with
the random intercept model:

= Remove the terms alcohol and speed from the model.
= Click on accs in the Equations window, select j-2 from the N levels: drop
down list and region from the level 2(j) drop down list, and click Done.

. Y variable E|

¥ | accs ﬂ
H levels : | 2§ j
level 2(j) : m -

level 1di) : | county j

done

= Click on the variable cons in the Equations window and set cons to be
random at the j(region) level.

. X variable E

COTLE -

Fixed Parameter

delete Term

Done

As there are only 12 regions at the higher level, it is recommended to use the
RIGLS estimation method, which provides less biased estimates of the variance
than the IGLS when there is limited number of higher level units.

= Select RIGLS from the Estimation menu of the main window
= Click the Start button on the toolbar of the main window to run the model.
The results are as follows:
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=¥ Equations |Z| |E|g|
accs, ~ Poisson(z,)

log( ;) =logepop,; + By,cons

By =-6.452(0.075) +2,

1] ~NO Q)+ Q.= [0.068(0.028)]

var(aces,|z,) = 7,

Hame | Fonts | + | - | Add 1&rm|§s‘tima‘tes|Ilnnlinear Clear | Hotation | Responses  Help

In order to graphically represent the average intercept and the random
intercepts:

= Open the Predictions window from the Model menu. The elements of the
model are arranged in two columns. These columns are initially grayed out.
We will build a prediction equation in the top of the window, by selecting the
elements we want from the bottom section.

= Click on Bg in order to select only the fixed part of the model.

= Select ¢100 from the Output from prediction drop down list

= Click the Calc button

=¥ predictions

log( HCES!}. )= ﬁncmls

variable cong
fixed B
level 2

level 1
<] |

output from prediction to | c100

ﬂ OULpLL tO =

Fomts | Hame | Calc Help

1.0 SEof |

» Open the Customized Graphs window from the Graphs menu

" Transport
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= In the plot what? tab, select c100 from the y drop down list, alcohol in the x
drop down list and line in the plot type drop down list.

=8 Customised graph : display 1, data set 1 ['__||E|E|
1] « || Apply | Labels | Del data set Help W autosort onx

dsz |¥Y X # | —Details for for data set number {dsZ) 1

1 cl100 alcoho plot what2]| plot style | position | error bars]  other
2

3 ¥ C100 - X alcohol -

4

5 filter [none] - group [none] -

L3

7 plottype | T -

3

9

10 3

< »

. Click the Apply button to obtain a graph of the average (fixed) intercept

ul Graph display E| [E| E|

Accordingly, in order to graphically represent the average intercept and the
random intercepts:

= Open the Predictions window from the Model menu.

= Click on Bo and ug; in order to select both the fixed and the random part of the
model.

= Select ¢c101 from the Output from prediction drop down list

= Click the Calc button
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=¥ predictions

-~

log( HCES!}. ) = ﬁujcmls

variable

fixed
level 2
level 1

a

Cons

Bo

M o

Fonts | Hame

output from prediction to | 101

Calc Help

10 SEof |

j output to -

* Open the Customized Graphs window from the Graphs menu

= In the plot what? tab, select c101 from the y drop down list, alcohol in the x
drop down list, line in the plot type drop down list and region in the group
drop down list.

= Inthe plot style tab, select 16 rotate from the color drop down list.

= In the other tab, select group code.

=8 Customised graph : display 1, data set 1 |Z||§|E|

13| - | Apply | Labels | Del data set Help [V autosort onx

ds #

1

¥ x | —Details for for data set number (dsZ) 1
cl01 = || [plot what?] plot style | position | error bars|  other

¥ cli - X alcohol -

filter [nene] - group region -

plottype | fine -

B | @0 | = | & | G| e | G | P

| £

|

= Click the Apply button to obtain a graph of the random intercepts
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=% Graph display |Z| |E| ['E

-6.0 ' —region =1
- —rggion =2
: ——region =3
6.2+ :
' —ragion =4
: —_—rggion =03
P o
5.4 . region =0
I region =48
6.6 —'—; —region =8
- —rggion = I
6.8 | I I I
-18.3 0.o 18.3 36.5 54.8 730 ——ragion =12

We will now add a random slope to the model:

= Click on the Add Term button of the Equations window and add alcohol to
the model.

= Click on the variable alcohol in the Equations window and set alcohol to be
random at the j(region) level.

=  Click on the Start button to run the model

=% Fquations |:| |E| E'

accy ~ Poisson( ,-.q.j.)

log( ) =logepop, + fycons + g aleohol,
By =-6.553(0.085) +u,
By =-0.045(0.015) +a,,

uy| N, Q) o= |0087(0.036)
ey, 0.009(0.005) 0.003(0.001)

var(aces | z) =

Hame | Fonts | + - | Add Term Estimates  Honlinear | Clear | Hotation | Responses Help
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The results reveal a significant variance in the effect of alcohol controls on the
number of accidents.

However, it has been proved that the 1° order MQL estimation method tends to
overestimate some of the variance in Poisson multilevel models. We will
therefore switch to the 2™ order PQL (Penalized "Predictive" Quasi Likelihood),
which is more accurate.

= Click on the Nonlinear button of the Equations and select linearization 2™
order and estimation type PQL and click Done.

. Nonlinear Estimation E|@|E|

Distributional assurnptions

f* Poizzon (" extra Poizson
Linearization
2nd
i 1zt ord i
S ArHeEr * Order
E ztimation type
AL & PUL
Ilze Defaults Dane ‘

= (Click on the More on the toolbar of the main window button to run the
model.

-::::- Transport
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=% Equations |:| |E| E'

accs, ~ Poisson( )

log(7,) =logepop, + fycons + 3 alcohol,
By =-6.642(0.108) +2,
[y =-0.059(0.014) +u,,

uy| ~N@, @) : g, = [0139(0.057)
iy, 0.014(0.007) 0.002(0.001)

var(aces,|z) = 7

Hame | Fonts  + - | Add Term Estimates | Honlinear | Clear | Hotation | Responses  Help

All fixed and random effects are statistically significant.

In order to graphically represent the random slopes, we follow the process
described above for the random intercepts. In this case, we should select Bo, B1,
Ug; and uy; in the Predictions window of the Model menu and output from
prediction to another column. We then obtain the following:

5 Graph display |:| |E|E|
-6.7 : —_—ggon =]
' —_—apgion =2
. : repion =1
A :’h\\
region =4
L region =3
T4 \ —_—rggion =6
E —_—gpon =&
A I ragion =2
region = Il
_B_ﬁ
-18.3 0o 18.3 36.5 54.8 730 o
—_—rggion = I2

In order to explore the residuals of the model, starting by the level-1 residuals:
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= Open the Residuals window from the Model menu

= In the Settings tab, write 300 (or any other appropriate column number) in the
start output box and click on Set columns. The boxes beneath this button are
then filled in gray with the column numbers that will be used for residuals
calculations. Additionally, select 1-county fro the level: drop down list.

= Click on the Calc button in the Residuals window.

=¥ Residuals
i Settings

Output Colurnns

shart output at 300 Set columns

residuals to |
10 SD[comparative] of residual to |

standardized(diagnostic) residuals to |

[v normal scores of residuals to |

¥ naormal scores of standardised residuals |

W ranks of residuals ta

[v deletion residuals

[v leverage values

|
|
|
[v Influence values |

r

el |-|;.3.:,unt_.r. j Cale Help

= In the Plots tab, select the first option standardized residual * normal scores

= Click on the Apply button.

= Then in the Plots tab, select the fourth option standardized residual * fixed
part prediction

= Click on the Apply button.
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=% Graph display E]E|E| =% Graph display

11.07
8.3
.84
2.8+
n.n
-2.84
-5.81
-3.3¢
N 25 o5 s o0 o 15 11;?1.0

nscore pred. val.

std( bcons.1)
std( bcons.1)

Y

We can see that the level-1 residuals present no significant deviation from the
Normal distribution. Moreover, the residuals are independent from the predicted
values.

In order to explore the level-2 residuals, we will repeat the process described
above, except that we will set start output at a different column number and
select 2-region in the level: drop down list, in the Settings tab of the Residuals
window.

=% Residuals

Settings

Output Calummns

zhart output at =] Set columns

regiduals to |
10 SD[zamparative] of residual ta |

standardized(diagnostic) rezsiduals to |

[v normal scores of residualz to |

W narmal scares of standardised residuals |

¥ ranks of residuals to

[v leverage values

|
[v deletion reziduals |
|
|

[v Influence values

-

level | 2iegion | Calc Help

We will then obtain the following results:
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| Graph display EHE|E| | Graph display [Z||E|E|

= o o -
sy P
“h oo =k
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stdi aleohal

=15
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These results are less satisfactory compared to the level-1 results, as a
consequence of the limited number of higher level units.

Accordingly, the effect of speed enforcement on the number of accidents can be
separately examined, by removing the variable alcohol from the model and
adding the variable speed, also allowing it to randomly vary between regions.
The multilevel model fitted should be as follows:

=% Equations

aces,, ~ Poigzon( ;T!-J,-)

log( ) =logepop, + gpcons + 3 speed,
Py =-6.689(0.110) + 1,

By =-0.131(0.041) +uz,,

uy| ~N, @) : q,=|0142(0.058)
iy, 0.046(0.020) 0.020(0.008)

var(aces,|7) = 7,

Hame ‘ Fonts | + | - | Add Term | Estimates Honlinear | Clear Hotation | Responses | Help I

All fixed and random effects are statistically significant.

In order to examine the combined effect of speeding and drinking-and-driving
enforcement, we will add alcohol to the model, allowing it to vary among
regions. We will obtain the following results:
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Project co-financed by the European Commission, Directorate-General Transport and Energy

Page 65



Chapter 2

=¥ Equations

aces; ~ Poisson( ,-—h.j.)

log( ) =logepop; + fycons + g, speed, + gralcohol,
By =-6.654(0.101) +1p,

By =-0.058(0.023) +.z,,

By =-0.037(0.010) + 1,

uy 0.119(0.050)
wy| N0 Q) QT 0.013(0.009) 0.006(0.003)
iy 0.008(0.004) 0.000(0.001) 0.001(0.000)

var(aces,| z,) =

Hame | Fonmts | + | - | Add Term  Estimates | Honlinear | Clear | Hotation | Responses| Help |

In this case, all fixed effects are significant; however, the covariances related to
the number of speed infringements are non significant. This is quite surprising,
when considering that both effects were significant when examined separately.
It is therefore indicated that there is some bias in the model. This is also
identified when plotting the predicted values with alcohol and speed.

In order to plot the effects of alcohol, follow the process described above, but
select in the Predictions window only the Boj, B2}, Ugj and uy effects (i.e. cons and
alcohol) and another column (e.g. ¢106) in the output from prediction drop down
list. Accordingly, in order to plot the effects of speed, follow the same process,
but select in the Predictions window only the Bgj, B1j, Uojand uy; effects (i.e. cons
and speed) and another column (e.g. ¢107) in the output from prediction drop
down list. The two plots should be as follows:

¥ Graph display Elﬁ‘gl =¥ Graph display

-2

reglon =4

region =J

—regon =6

reglon =4

—region =2
724 £t

——ragion =10

| —region = J2

77 : | | | | region = 2 8.0

We can see that there are several regions for which the slopes are counter-
intuitive. We should examine whether the two variables are correlated.
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= Open the Averages and correlations window from the Basic Statistics menu
= Select Correlation in the Operation tab

= Click on alcohol and speed in the variables list

= Click Calculate

% Averages and Cor... |

Operation
(" Awerages
{* Comelation

[ “wieights Column

LCalculate Help |

lngepop

The results will appear in the Output window as follows:

=¥ Dutput |Z| |E| E|
E

245 observations 1
Means
alcohol speed
0.00029796 -0.00010204
5.D.'s
alcohol speed
9.7450 4.2513
Correlations
alcohol speed
alcohol 1.0000
speed 0.7299 1.0000 B
b
Include owutput from system
generated commands

We can see that there is a positive correlation of 0,729 between the variables
speed and alcohol, indicating multicollinearity. This explains to some degree the
confusing modelling results (see section 2.3.4 of the Methodology Report for
more information on multicollinearity effects).

A two-level extra-Poisson model (with overdispersion)
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Another issue that needs to be examined in Poisson models is overdispersion
(see section 2.3.4 of the Methodology Report). In order to fit a multilevel model
with overdispersion, an extra-Poisson distribution is assumed:

= Create a two-level model including only a constant term in the Equations
window, as described previously

= Click on the Nonlinear button of the Equations window and select
distributional assumptions extra Poisson, linearization 2" order and
estimation type PQL and click Done.

. Nonlinear Estimation EI@|E|

Digtributional azsumptions

" Paisson @+ tentra Poissory
Linearization
¢ st ord o 2nd

s arder * Dn:ler

E stimation type
" MOL + POL

Uze Defaults Done ‘

An additional term to be estimated (i.e. the dispersion parameter) will appear in
the bottom line of the Equations window, allowing for the mean / variance
relationship to be different than 1. Running the model should give the following
results:

=¥ Equations

accs, ~ Poisson( f”h})

log(7,) =logepop, + fycons
By =-6.486(0.073) +ap,

] ~NO @) Q= [0.0570.026)]

var(aces,|z) = 22.616(2.096) %

Hame | Fonts  + | - | Add Term  Estimates | Honlinear | Clear | Hotation Responses  Help I

The results indicate that there is overdispersion in the data, as the dispersion
parameter estimated is highly significant.

Adding alcohol to the model gives the following results.
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=¥ Equations |Z||E|E|
accs, ~ Poisson(r,) [~
log(z,) =logepop, + gycons + g, alcohol,

B =-06.572(0.087) +Muj

By =-0.046(0.010) +,,

uy| N, Q) q,= |008200037)
y; 0.005(0.003) 0.001(0.000)

\.’m'(accsl.j]gj) =12.923(1.228) =; [

-

Hame | Fonts | + - | Add Term | Estimates | Honlinear | Clear Hotation  Responses | Help

In this case, the dispersion parameter is lower (but also significant), indicating
that the explanatory variable has accounted for a part of the overdispersion.

2.3.4.3. A two-level negative binomial model

As explained in the Methodology Report (section 2.3.4), another option for
dealing with overdispersion in count data is to assume a Negative Binomial
distribution, which includes a more complex variance structure, allowing thus
more flexibility. In order to fit a Negative Binomial model in the data:

= Create a two-level model including only a constant term in the Equations
window, as described previously

= Click on the N (QX, B) that appears on the first line of the Equations window,
select Negative Binomial from the available distributions and click Done.

Select distribution

Birarmial s
Poizzon E

- Binamial —
Mormal

54

Link. type iz zet ta LOG

Dane Cancel
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In the bottom line of the Equations window, the mean / variance relationship is
displayed, in which the variance is a quadratic function of the mean. Running
the model should give the following results:

=¥ Equations |Z| |E| El
ACCS, ~ -Ve Bmomal( ﬁ!.j)

log( ) = pyeons
By =-6.447(0.075) +u,

[unj] ~N(0, Q) : Q,= [0 060(0 0:7}]

2
var(aces,|z) =z, + 7" /v

Hame | Fonts  + -  Add Term Estimates Honlinear | Clear  Hotation PResponses | Help

Adding alcohol to the model gives the following results.

=¥ Equations |Z| |E| El

accs, ~ -ve Bmonual( ﬁ!.j)
log( ) = pyeons + g alcontrol
By =-6.599(0.098) + .,
By =-0.052(0.013) +u,,

uy| NG, Q) : 0, = |0105(0.046)
iy, 0.009(0.003) 0.002(0.001)

2
var(aces,|z) =z, + 7" /v

Hame | Fonts  + -  Add Term Estimates Honlinear | Clear  Hotation PResponses | Help

These results are very similar to the Extra-Poisson model, in terms of both fixed
and random parameter estimates. It is therefore shown that both Extra-Poisson
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and Negative Binomial distributional assumptions can efficiently handle
overdispersion in count data.
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Project co-financed hy the European Commission, Directorate-General Transport and Energy

Page 1



2.4 Longitudinal data
Heike Martensen & Emmanuelle Dupont (IBSR)

The example data used in this section are a set of simulated data for 500
beginning drivers for which a driving-skill score was simulated for 7 consecutive
years. Moreover, for each occasion an experience value was generated. This
value was always “0” at the first measurement occasion and corresponded to
the cumulative number of km driven for all the others. The variable “initial age”
indicates for each driver the age at which they acquired their licences.

Data load

Open the file DRIVING SKILL.xls. Like most repeated measures tables, the
data are coded in a format that will be called “wide” here. This means that there
is one row for each subject with all measurements in it. Below a section of the
original wide table is shown. To the right, the table continues with exp3/skill3 to
exp6/skill6, below there are more subjects than visible here.

A,

E | C | D | E | F | G | H | I

1 |sublD initage | iacen expl skilld expl skilll exp? skill2
2 1 24 2 0.oa 553 057 335 1.80
= 2 20 -2 0.oa 2595 074 252 0.85
4 3 20 -2 0.oa 253 0.15 4.81 053
L5 | 4 21 -1 0.o0 725 0&2 a.10 1.02
B 2] 41 19 0.oa a7 0.03 425 0.87
L7 5] 24 2 0.oa 415 0.o2 548 030

To analyse these data in MLwiN, they have to be imported (see section 2.2 for
instructions to paste data from Excel into MLwiN) and then the wide table must
be converted into a long table. This means that all measurements are noted in a
long list below each other. Only one variable “experience” and one variable
“skill” are present and the measurement occasion is indicated by a third
variable. An example for a long table is given here:

A B | ¢ | b | E | F

1 |sublD initage  |iacen exp skill telaps
2 | 1 24 2 0.00 5.958 0
El 1 24 2 0.97 3.35 1
4 1 24 2 1.80 5.43 2
| 5 | 1 24 2 269 4.47 3
B | 1 24 2 317 4.91 4
7 1 24 2 3.33 8.57 5
g | 1 24 2 4.29 6.49 5
9| 2 20 -2 0.00 2595 0
10| 2 20 -2 0.74 252 1
11 2 20 -2 0.86 1.39 2
12 2 20 -2 1.65 459 3
13| 2 20 -2 1.71 1.95 4
14| 2 20 -2 2.23 4.43 5
15 2 20 -2 2.36 289 5

543
1.39
5.2
4.80
8.76
8.65



2.4 Longitudinal data

To create a long table in MLwiN, click on “Data Manipulation” in the top menu
and select “Split record” and fill the dialogue window in as shown below.

_loix

—Dimensions

Mumber of u:u:u:asiu:unsl 7 ﬂ Mumber of wariables I a ﬂ

—Stack data
Ocassion 2| expl =killl ;l
Ocassion 3| expd =kill2
Ocassion 4(exps zkill3
Ocassion 5 expd zkill4
Ocasszion Bfexps zkills
Ocassion 7 |expb zkills
Stacked into) C15 c19 j

—Repeat{carried) data
— Input columng

COutput columng

Free colurmnz

Same as {gut

S plit | v Generate indicatar colurnn IM'I Help

Click on “Split” to conduct build the long table. Then click on “Data
Manipulation” and select “Names”. Change the names of C18, C19, and C20 by
selecting each of these numbers from the list, typing their new name into the top
frame and pressing return. C18 is the collection of the experience scores. Call it
“experience”. C19 is the collection of the skill scores and should be called “skill”.
C20 contains an indication from which measurement occasion the data come.
This variable, call it “occasion”, has a value from 1 to 7 (1 for skill0, 2 for skill1,
... etc.).

As described in the methodology report, rather than simply indicating the
number of the measurements, the time elapsed should be coded. This means
that values should run from 0 to 6 rather than from 1 to 7. In order to do so, click
on “Data Manipulation” in the top menu bar and select “Calculate”. Fill the
dialogue window as shown below:
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T ioix]

‘| expenience . C21="oceasion"™ |
skl

| ]
J|ca2
|cz3

|c24
i|C25 il
|C26

| s Jid

i [e:
& 2 TR
1% T + i £
| [ ABSOlte (R e
Jcz2 |
ACOS
£ ALOGH
C34 !

| 35 =l ANGiLllar ll il il il il _|

AMTlloganthm
wa e
COSine 7

Y
Help | Calculate :‘ I missing |

Than open the “Names” window and rename the newly generated variable into
“telaps” (short for “time elapsed”).
The long table should contain 3500 cases and consist of the following variables:

>

sublD Identification number of the driver tested.

initialAge Age at obtainment of drivers licences.

iacen Initial age centred to its mean.

experience Number of km driven (in 1000).

skill Number between 0 and 15 indicating the driving skill.

telaps Time elapsed: 0 for first test, 1 — 6 for tests at consecutive
years.

2.4.1.1. The empty two-level model

In the case of repeated measurements, the simplest model is the empty two-
level model. The first level is that of the single driving skill scores. These skill
scores are nested within subjects, as there are 7 skill scores from each person.
The repeated measures structure is therefore defined at the second level.

Model formulation

Define the dependent variable:
e C(Click on the “y” and
= Select “skill” from the drop-down window as dependent
variable
= Select “1-i"from the N-levels drop-down window
= Select “sublD” from the level 1(j) drop-down window
= Click “done”

Then define the dependent variable (skill) as varying over two random factors,
namely the individual measurements (telaps) and the subject they are taken
from (sublD)
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e Click on the dependent variable and define sublD as the second level as
shown below.

|
y: skill | -
H levels : I 2. ij j
Level 2(j) : | subID j
level 1(i) : Itelaps j
done I

Then define a variance component model by allowing the intercept to vary
randomly across locations.

Click on the intercept

Check the box j(sublD)

Press “Done”

Press “Start” to estimate the parameters

Results and Interpretation
Your Equations window should now look like this.
slcill!.j. =Byt ey
Bo =6-543(0.082) +a
g~ N(0, 6g) Gl =2.861(0.212)
g, ~N(0, G2 . =3.402(0.088)
~2*oglikelihood = 15182.690(3500 of 3500 cases in use)

The within-subject variation is indicated by o°. and the variation between
subjects by o®,. Note that the results suggest that the differences between
repeated driving tests for each participant are larger than those across
participants. The mean intercept, By, indicates that over all subjects and all
times of testing the mean skill score is 6.543.

Graphic inspection of the residuals: Level 1

To inspect the residuals of the model,
e Click on Model in the top menu bar
e Select Residuals

-::::- Transport
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=k Residuals -0 x|
Settingsi | Plots |

— Output Colurnns

start output at 300 Set columnz |

reziduals to |

|-| I SD[comparative] of residual to I

standardized(diagnostic] residuals to |

¥ nommal scores of residuals to

¥ nommal scores of standardised residuals

M ranks of residuals to

v deletion residuals

¥ leverage values

v Influence values

[~ Calculate weighted residuals

level: I'I:telaps VI Calc | Help |

Click “Calc” to calculate the Level 1 residuals
Select “Plot” at the top of the “Residuals” window
Check radio-button in front of “standardised residual and normal score”

Click “Apply”

2k Graph display -10] x|

31T

F Y

284

1584

08

std( cons)

=37 | | | | | | |
-39 28 20 -10 00 10 20 28 389

nscore

Graphic inspection of the residuals: Level 2

Go back to the “Settings” part of the “Residuals” window
Select “2:sublD” from the “level” dropdown list
Click “Calc” to calculate the Level 2 residuals

[}
[}
[}
e Select “Plot” at the top of the Residuals window
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e Click “Apply”
2k Graph display i [w] B3]

std( cons)

23y

1
-3 } } } . } } } |
-33 25 -16 D& 0D 08 16 25 33

nscaore

The residuals are satisfyingly close to a normal distribution (that would have
been indicated by a straight line).

2.4.1.2. A Two-level variance component model with on predictor

In the empty model there was more variation within subjects (as indicated by 0%
) than between subjects. To estimate the proportion of the within subjects
variation that can be attributed to the time elapsed after acquisition of their
drivers licence, “telaps” is used as a predictor.

Model formulation

Click “Add Term” at the bottom of the Equations window
Select “telaps” from the “Variable” drop-down window
Click “Done”

To estimate this model press “Start”.
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Results and Interpretation

b | Equations
skilll.j. =Byt 0.496(0.013 }telapsﬂ. te,
B = 3.055(0.090) +u,

1, ~N(0, 65g) o5g =3.025(0.212)
e;~N(0, 67) G- =2.254(0.058)
~2¥oglikalihood = 13947.380(3500 of 3500 cages in uge)

Because ‘“telaps” is coded to be zero at the time of acquirement of the driving
licence, the mean intercept By, indicates the average skill score at that moment.
The coefficient for “telaps” indicates that on average the skill score increases by
half a point each year that a driver has his/her licence. Note that the within
Subject variance o<, is reduced as compared to the null model, suggesting that
the measurements for each participant changed over time. However, the
between subject variance 0y, as well, suggesting that participants varied in the
effect that telaps had for tham. Finally, the decrease of the deviance
(loglikelihood) confirms that the model with ‘telaps” fits better than the one
without.

2.4.1.3. Two-level random intercept model with two predictors

The question “treated” in this simulated study is whether it is the number of
years passing or rather the increase of experience that make older drivers less
accident prone than younger ones. To investigate this, the driving experience
(measured in 1000 km driven) is taken up into the model in parallel with the time
elapsed (telaps).

Model formulation

Click “Add Term” at the bottom of the Equations window
Select “experience” from the “Variable” drop-down window
Click “Done”

To estimate this model press “Start”
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Results and Interpretation

o Equations

skillz.j. =Byt 0.028(0 D:‘-S}telapsz.j +0.947(0 DH}experimlceU-l- &
By = 5.049(0.090) + 1,

1~ N(0, 6y9) G =3.015(0.209)
2,~N(0, 52 o;=2.138(0.055)
-2¥oglikelihood = 13784.950(3500 of 3500 cases m use)

The coefficient for the variable “experience” is highly significant as it exceeds its
own standard error several times. The coefficient for “telaps” however, is not
significant anymore. This might be confusing, especially when noting that
overall the model has clearly increased in fit (to test the significance of the
difference between the two deviances, 162.43, use ‘basic statistics”, ‘tail
areas”). The change in the predictor for “telaps” is due to the fact that the time
elapsed since one has acquired his driver’s licence and the number of
kilometres one has driven are two related measures. A significant coefficient
indicates that a proportion of the variance can be attributed to the predictor
exclusively. The fact that “telaps” is not significant anymore when taken up
together with “experience” suggests, that all the variance that “telaps” explained
can be explained by “experience” as well. Note however, that the reverse is not
the case: “experience” is significant even if it is taken up jointly with “telaps’,
indicating that there is a proportion of variance in the driving skills that can be
uniquely attributed to “experience’.

2.4.1.4. A Two-level random intercept model with predictor experience
only

Because the predictor “telaps” (i.e. the time elapsed since acquirement of the
driving licence) is not significant anymore one “experience” is taken up into the
equation, this term can be dropped and “experience” remains in the model
equation.

Model formulation

e Click the term “telaps” in the model equation
e Click on “delete Term”
e To estimate this model press “Start”
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Results and Interpretation

3 | Equations

skill!.j. =fBy T 0.998(0 {}Z-l}ers:])erieuce!}. te,
By =5.057(0.089) + x« 0

1, ~N(0, 65) Gog =3.022(0.210)
e, ~N(0, 62 o, =2.137(0.055)
~2¥aglikelihood = 13785.500(3500 of 3500 cazes in uge)

Removing “telaps” from the model has increased the deviance by only 0.55.
With 1 degree of freedom (one parameter that needs to be estimated less), this
CHI-2 value has a probability of 0.76 which is not significant at all. Indeed, all
the variance in the “skill” scores that can be explained by time elapsed (telaps),
can be explained by “experience” as well.

2.4.1.5. A Two-level random intercept random slope model

The coefficient for “experience” indicates that generally driving skills improve
with an increase of km driven. To test whether this increase is the same for all
participants we will allow the slope of experience to vary randomly across the
level-2 units, i.e. the participants.

Model formulation

e Click on the Length
e Check the box j(IDlocation)
e Estimate the parameters by clicking on “Start”
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Results and Interpretation

skill!.j. =Byt ﬁlj.experieuce!}. te,
Loy = 5.058(0.077) +u o

By = L.OO2(0.027) +u 1y

gyl ~N(0, Q) Q.= 2.094(0.190)
iy 0.244(0.049) 0.090(0.023)

ey~ N(0, G)) o.=2.027(0.057)

-2¥aglikelihood = 13700.750(3500 of 3500 caszes 1 use)

Both, the intercept Boj and the coefficient of “Experience’, By, are now varying
across subjects with the means indicated in the second and third equation.

The between subject variance has now become a variance-covariance matrix
Q,: The upper left number is 0%, the variance of the intercepts across subjects.
It indicates how much the average driving score varies between them. The
lower right number is 0°,;, the variance of the “experience’™ coefficient across
locations. It shows that the relation between “experience” and “skill” varies
between participants. The lower left number is 0,91, the covariance between the
two, indicating that subjects with a higher intercept (i.e. the average ‘skill”) have
steeper slopes (i.e. a stronger increase of skills with experience).

The deviance decreased by 85 as opposed to the variance component model,
indicating that there is indeed substantial variation in the size of the experience-
effect, which also is apparent in the fact that the variance of the slope, 0°,1, is
significant.

Graphic inspection of the model predictions
To plot the model predictions, they have to be saved as a new variable first.

e Select “Model” in the top menu bar and click on “Predictions”

e C(Click on all parameters in the lower half of the appearing dialogue window
(so that they turn from grey to black)

e Select an empty column (e.g. c20) for “output from prediction to”

e Click on “Calc”

e Now you can close the “Predictions” window
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Now a variable that contains the predictions of the model is created, which can
be plotted against the “experience”. Open the graph dialogue by clicking on
“Graph” in the top menu bar and by selecting “Customized Graphs”. Fill in as
shown below (all changes have to be made in the drop-down lists on the right-
hand side and appear automatically in the left-hand side table)

¥ Customised graph : d O ] 4
ID1 vI ﬂpplyl I;ahelsl Del data set I Help I [¥ autosort on x
ds & |Y x & | —Details for for data set number (dsZ) 1
1 c20 experience . plot what?T plot S'tyleT position Terrur harsT other
2
3 v [co <] x pericncoljie
4
5 filter I fnone]] - l group I sublD - l
6
7 plot type |m vl
8
9
10 -
< | _>I_I

e Press “Apply” to create the graph. (You can close the Dialogue Window
then.)

The resulting graph shows separate regression lines for each location.
2k Graph display o m] 1

177

The graph shows a “the rich get richer’effect: Those drivers that start at a high
level also improve more with additional driving experience. In the model output,
this effect becomes apparent in the covariance between intercept and slope,
Ouo1-

2.4.1.6. Adding a level-two predictor

The beginning level of driving skills and the effect of “experience” vary
systematically across participants. It is therefore sensible to search for
predictors at the second level (here the subject level) to explain these
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variations. As an example we will include the variable “iacen”, the initial age (ia)
centered to its mean (cen).

Model formulation

Click “Add Term” at the bottom of the Equations window
Select “iacen” from the “Variable” drop-down window
Click “Done”

To estimate this model press “Start”

Results and Interpretation

3 | Equations

skill!.j. = By + ﬁlj.experieuceg +0.032(0 GIT)iﬂcenj + 2y
Bo =3-058(0.077) + 1,
By =1.002(0.027) + i y

uy| ~NQ0, ) : q,=|2106(0.191)

I

My 0.214(0.049) 0.090(0.023)

e, ~N(0, 6) o, =2.027(0.057)
-2¥aglikelihood = 13697.580(3500 of 3500 cazes m use)

The coefficient of “iacen” is marginally significant (Z= 1.88; p=.060). Its positive
value would indicate that drivers who acquired their driving licences at a higher
age tend to have higher skill scores.

2.4.1.7. Adding a cross-level interaction

As the next step it will be tested whether the initial age (iacen) modifies the
effect of “experience”. To do this, the interaction between these two varis
included into the model.

Model formulation

e C(Click on “Add term” and

¢ Include the interaction between “iacen” and “experience”
= Select order 1 (this means it’s a first-order interaction)
= Select “iacen” as first variable
= Select “experience” as second
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» Click “Done”
e Estimate the model by pressing “Start”

Results and Interpretation

=% Equations

skill!.j. =Py T ﬁlj.eﬁqmrience!}. +0.010(0 ﬂl'}iﬂcen}. + 0.046(0.006 }iﬂceu.epqznerience!.j. +e,
Bo; =35.062(0.077) +u g
By =0.998(0.025) +u

[Mu;] ~N(0, Q) : Q,= [ 093(0.130)

My 0.237(0.045) 0.043(0.020)

g;~N(0, 62) oo =2.030(0.057)
-2¥aglikelihood = 13634.490(3500 of 3500 cases in use)

Taking up the interaction term leaves the already marginal coefficient of “iacen”
non-significant. The interaction between initial age (iacen) and “experience”
itself, however, is significant. Its positive coefficient indicates that drivers who
acquired their licence at a later age improved more per 1000 km driven than
those who acquired their licence at an earlier age. (Please remember that all
these “conclusions” are based on simulated data and generated for this
manual).

2.4.1.8. Conclusion

In this chapter it was demonstrated how to use a two-level model to analyse
repeated measurements taken from a group of participants. It was shown that
the first level indicates the variation between measurements taken from the
same subject, while the second level contains variation between subjects.
Accordingly, variables that vary within subject across measurements (e.g. time
or growth variables) should be included at level one, while variables that
characterise individuals should be taken up as level-two variables. In the case
of a repeated measurements analysis, a cross-level interaction then indicates
how person-characteristics can modify the effect of time- or growth variables.
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George Yannis, Eleonora Papadimitriou and Costas Antoniou (NTUA)

In this section, an example for fitting multivariate multilevel models is presented
using the MLwinN 2.01 software. The example concerns an investigation of the
regional effect of drinking-and-driving enforcement on the number of road
accidents and related persons killed in Greece. The theoretical background,
models fit and results were discussed in section 2.5 of the Methodology report.

It is noted that in section 2.5 of the Methodology Report two model formulations
were defined and presented: a normal bivariate multilevel model and a hybrid
normal-poisson bivariate multilevel model. However, only the latter is
demonstrated in this section, as this formulation was proved to be more efficient
in the estimation of the models. However, apart from the different level-1
distributional assumptions (see section 2.5. of the Methodology Report) the
same process would be followed for fitting the first formulation as well."

The dataset includes data on accidents and persons killed, as well as alcohol
and speed police controls data for the 49 counties and 12 regions of Greece for
the period 1998-2002. Part of this dataset was also used in section 2.3.4 of the
Methodology report (multilevel models for count data) and in the related
demonstration for the Manual. In this section, a variable corresponding to the
number of persons killed was also included.

More specifically, the variables and values used are summarized in the
following Table:

Region 1-12 regions of Greece

County 1-49 counties of Greece

Accidents  The number of accidents of each county

Killed The number of persons killed of each county

alcohol The number of alcohol controls of each county (1000 alcohol
controls)

Speed The number of speed infringements of each county (1000 speed

infringements)

logepop  The natural logarithm of the population of each county

Cons The constant term (1)

It is reminded that the counties of Athens and Thessalonica (large metropolitan
areas with disproportionally high numbers of road accidents, persons killed and
police controls) are not included in the dataset. It is also reminded that the
explanatory variables (alcohol and speed controls) are centered around their
mean to avoid numerical problems in the estimations.

= Open the dataset MultivariateManualData2.ws using the Open Worksheet
option from the Files menu. Opening the Names window from the Data
Manipulation menu gives the following:
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1 [region | | Refresh |§ategories | Help |
Hame | n | missing | min | max "_‘
1| region 245 0 1 12 —
2 | county 245 0 1 49
3 | accidents 245 0 15 T4
4 | killed 245 1 1 46
5 [ alcohol 245 0 -6.82 T2.TH1
6 | speed 245 0 -3472 25.426
1| logepop 245 ] 5.96 12.692
8| cons 245 0 1 1
9(Co 0 0 [ 0
10 | C10 0 0 [ 0
1 | C11 0 0 i 0 w

As described in the multivariate multilevel models Methodology report, the two
responses will be treated as 2" level grouping and the actual values of both
responses will be treated as 1% level units. In order to define the bivariate
structure:

= Click on the Responses button in the Equations window
» In the Specify responses window, click on accidents and killed and then click
Done:

=¥ Specify responses |_||E|[z|

reqion
Caunk

alcohol
zpeed
logepop
Cons

Done

The Equations window should now look like this:
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=¥ Equations

resp, ~ N(XE, Q)
resp, ~ N(XB,
resp, =

resp,

B[=1ES

Hame | Fonts | + Add Term | Estimates Clear  Hotation

Responses | Help

Moreover, in the Names window, we can see that two new variables were
created; the variable the variable resp_indicator, which is a binary variable
separating the two responses (i.e. indicating to which response the current data

row applies to), and resp, which contains the respective actu
responses.

Note also that the variable resp includes exactly twice the n
each response, i.e. 2*245=490. Moreover, the minimum an

al values of the two

umber of entries of
d maximum values

of this variable are the minimum and maximum values of the grouped values of

both responses.

(=1

1 [region | | Refresh | Categories | Help |
Hame | n | missing ‘ min | max "

1 | region 245 ] 1 12 —
2 | county 245 ] 1 49

3 | accidents 245 0 15 T40

4 | killed 245 1 1 46

5 | alcohol 245 ] -6.82 72T

6 | speed 245 0 -3.4712 25426

T | logepop 245 0 95.96 12.692

8 | cons 245 0 1 1

9 | resp_indicator 490 0 1 2
10 | resp 490 1 1 T40
11 | C11 0 0 0 [}
12 | C12 0 0 0 [}
13 | C13 0 0 0 [}
14 | C14 0 0 0 [ w

However, so far we have specified a single level model. In

order to define the

multivariate two-level structure, we should specify that counties are nested

within responses.
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= Click on resp1 or resp2 in the Equations window
= In the Y variable window, select 2-ij from the N levels: drop down list and
county from the level 2(j) drop down list, and click Done.

If we click on resp1 or resp2 again, we can see that the county has been
replaced by a new variable county_long (see below picture on the right).

= Y varibi ]

¥:
Hlevels :

level 2(j) :
level 1(1) :

| resp ﬂ
R
-
| resp_indicato ﬂ
done

¥:
Hlevels :

level 2(j) :
level 1(1) :

done

esp -
EE e
| county_long ﬂ

| resp_indicato j

The Equations window should now look like this:

=% Equations

resp, i =

resp,; =

resp ;- N(XE, Q)
resp,;~ N(XB, Q)

=1

Hame | Fonts | +

Add Term  Estimates

Clear

Hotation |Responses| Help

It is interesting to see how the multilevel modelling properties are exploited to
build the multivariate structure out of the initial dataset.

= From the Data Manipulation menu on the main toolbar, select View or Edit

Data.

= Click on the view button in the Data window and select: county, accidents,
killed, resp_indicator, resp and county_long.
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goto line 11 view Help Font
region{ 245) i ~ accidents( 245) | «
1} 1 512
accidents
21 killed 25
3|1 alcohol 321
4| 2 speed 255
5|2 logepop 364
cons
62 resp_indicator 26
7|2 resp 405
a| 2 county_long 101
12
93 c13 286
10(3 c14 224
11| 3 c15 233
12| 3 g;‘g 260
13| 3 c18 305
14( 4 c19 159
15| 4 ] 246
[y |
16( 4 C23 108
17( 4 23 51
18| 5 c24 38
19] 5 il 104
20| 5 c27 197
21| 5 c23 138
22| 6 e 264
C30
23| 6 c31 467
24| 6 ©32 272
25( 6 c33 269
26| 7 g:‘; 77
27| 7 C36 ~ 129
;g ; OK Cancel ;fﬂ J

We can see how the resp_indicator variable separates the two responses, while
their respective values are stored in a single column (resp). Moreover, the new
variable county_long is the 2" level grouping variable. This demonstration fully
corresponds to the general theoretical multivariate structure presented in Table
2.5.1 of section 2.5 of the Methodology report.

EEX

goto line 11 view | Help Font
county( 245)  [accidents( 245) [Killed( 245) [resp_indicator( 4]resp( 490) |county_long( 490 «
11 512 58 accidents 512 1
2|2 664 63 Killed 58 1
3|3 321 52 accidents 664 2
4] 4 255 34 Killed 63 2
55 364 53 accidents 321 3
6|6 26 2 Killed 52 3
77 405 84 accidents 255 4
3|8 101 21 Killed 34 4
99 286 47 accidents 364 5
10| 10 224 17 illed 53 5
11| 11 233 44 accidents 26 [
12| 12 260 18 Killed 2 6
13| 13 305 29 accidents 405 7
441 414 ﬁﬂ 4% mxl O br du
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Before we proceed in fitting the multivariate model, the distributional
assumptions of the two responses should be specified. As discussed in section
2.3.4, the counts of road accidents and persons killed are random counts of
events occurring within a population and consequently they can only take
positive integer values. Therefore, a Poisson distribution is assumed and a log
link function should be used together with an appropriate offset term.

= Click on the N (QX, B) that appears for each response of the Equations
window, select Poisson from the available distributions and click Done.

i, Response type E| @| rg|

Select diztribution

Binomial -
MllFoiz=on

-vi Binomial

Marmal w

Link type iz zet to LOG

Done Cancel

= Click on the (1) that appears for each response in the Equations window,
select logepop as offset term and click Done.

The Equations window should now look like this:
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=% Equations [Z”E|E|
resp;~ POiSSDll(ﬁlj.)

resp,;~ Poisson(z,)
log(7,;) = logepop ;, +
log(7;,) = logepop, +

Hame | Fonts |+ | - | Add Term | Estimates Honlinear | Clear  Hotation | Responses | Help

In section 2.3.4 of the Methodology report, it was shown that overdispersion
was present in the accidents data and that extra-Poisson or Negative Binomial
distributional assumptions would be required in order to handle this unexplained
variation. As Negative Binomial responses are not available in this latest version
of the software, we will model the two responses by assuming extra-Poisson
distributions (for details see section 2.3.4 of the Methodology report).

= Click on the Nonlinear button of the Equations window and select
Distributional assumptions extra Poisson.

. Nonlinear, Estimation [Z”E|E|

Distributional azsumptions

(" Paisson @+ lextra Poissory
Linearization
" 1zt arder { znhd

Order

E gtimation bpe
~ MAL " PEL

ze Defaults Dane

We will now enter variables in the model, starting by an intercept term.

= Click on the Add Term button of the Equations window

= In the Specify term window, select cons from the variable drop-down list and
click on Add Separate coefficients.
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i, Specify term E@@

order =
wvariable reference category
cons | v
add En_aperate add Eqnjmu:un Cerice!
coefficients coefficient

= Click on the Estimates button of the Equations window and the parameters to
be estimated will be highlighted in blue. The Equations window will now look
as follows:

=% Equations

resp,~ Poisson( 7, j.)
resp,,;~ Poisson( ;)
log( ,le.) = logepop yt ﬁlcmlss.accidents!}.

log( ,-—;23.) = logepop 5T ﬁucmls.killed!}.

cov| resPylzy| = | amy;
=t — — 0.5 —
1 e&l) 2}' S 2_}' p [ A Uﬂ 23'] amw 2}

Hame | Fonts | + | - | Add Term gs’tima'tes|llonlinear| Clear | Hotation Responses | Help |

First of all, we can see that the coefficients By and B are fixed by default (i.e.
the option of random variation is not available when clicking on the related term
of the model). This is due to the fact that, as explained in section 2.3.4 of the
Methodology report, no random structure can be defined at the lowest level of a
Poisson model, as the level-1 variance is assumed to be equal to the mean,
and therefore known. In this case, though, the lowest level of the Poisson
variables is level-2 of the multivariate model.

Moreover, a covariance matrix for the two responses is created. In this matrix,
two dispersion parameters a are to be estimated, one for each response, in
order to fit extra-Poisson models, in which the variance-mean equality
assumption is relaxed. Finally, a covariance p between the two responses will
be estimated.

= Click on the Estimation Control button of the main Toolbar and select RIGLS
= Click Start to run the model. The results are as follows:
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=¥ Equations

resp .~ Poisson( 7, J.)
resp,; ~ Poisson( )
log(ﬁu} = logepop i F-6.471(0 Ul.*}cons.accidelltsg

lng(ﬁzj) = logepop 5 T-8.380(0 Olﬁ}cons.killedzj

cov l-espl_i.'|ﬁlj' = | 20.511(2 ?55}513-
resp,|my, 4.691(0.742) [mym I 3.700(0.334) 7y

Hame | Fonts | + | - A(I(IIerm|§stimates|Ilonlinear Clear | Hotation | Responses | Help |

The intercept terms of the two responses are both highly significant. Moreover,
a significant between-response covariance (p) indicates that more road
accidents per county correspond to more persons killed per county. The
significant dispersion parameters (a) of the two responses indicate that the
extra-Poisson distributional assumptions adopted were reasonable.

We will now introduce a (fixed) slope term in the model term.

» Click on the Add Term button of the Equations window

= In the Specify term window, select alcohol from the variable drop-down list
and click on Add Separate coefficients.

= Click More to run the model. The results are as follows:

=¥ Equations

resp .~ POiSSOll(ﬁlj)

respy~ Potsson(zy)

log(ﬁlj.) = logepop iy +-6.455(0 Ulﬁ}cons.accidentsg +-0.019(0 003}alcolml.accidents!}.
log(ﬁzj.) = logepop 5 T-8.372(0 {}33}co115.killecl!}. +-0.006(0 OOl}alcolml.killedl}.

lcovw| YEsP 1}'|ﬁlj = |24 555(2.216 }ﬁlj
resp, |y, 4.139(0.657) [rym,]"" 3.614(0.326) 7y

Hame | Fomts | + - | Add Ierm|§s‘timates|Honlinear Clear | Hotation Responses Help |

These results indicate that the effect of alcohol enforcement (alcohol.accidents
and alcohol.killed) is significant both for the number of accidents and for the
number of persons Killed.
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We will now proceed in building a three-level model, in order to investigate
regional effects. This third level is created above the existing 2" level, which
corresponds to the counts of the two responses at the county-level.

= Click on resp1 or resp2 in the Equations window
= In the Y variable window, select 3-ijk from the N levels: drop down list and
region from the level 3(k) drop down list, and click Done.

If we click on resp1 or resp2 again, we can see that the region has been
replaced by a new variable region_long (see below picture on the right), in order
to comply to the multivariate structure specified previously.

. Y variable

¥: |resp ﬂ ¥: resp | -

Hlevels : | 3 - ijk j Hlevels : | 3-ijk j

level 3(k) : (TN -] lewel3do: [region_long  ~|

level 2(j) : |cuurrt].r_lung ﬂ level 2(j) : |t:uunt].r_lung j

level 1(j) : |resp_indit:a1m ﬂ level 1(i) : |resp_indicatul ﬂ
done done

It is interesting to note that, in the Names window, several new variables have
been created (cons.accidents, cons.killed, alcohol.accidents, alcohol.killed), as
a result of the previous two-level modeling, in order to define the intercept and
slope terms for each one of the responses. The additions of the 3™ level
resulted in the creation of the variable region_long.
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(=19

1 [region | |Eefresh | Categories | Help |
Hame | n | missing | min | max o

1 | region 245 0 1 12

2 | county 245 0 1 49

3 | accidents 245 0 15 T4

4 | Killed 245 1 1 b1

5 | alcohol 245 0 -6.82 72,11
6 | speed 245 ] -3.472 25.426
1 | logepop 245 ] 9.96 12.692
& | cons 245 0 1 1

9 | resp_indicator 490 ] 1 2
10 | resp 490 1 1 T40
11 | county_long 490 ] 1 49
12 | beons.d 490 ] ] 1
13 | beons.2 490 0 0 1
14 | offs 490 0 9.96 12,692
15 | cons.accidents 490 ] ] 1
16 | cons.killed 490 0 0 1
1T | alcoholaccidents 490 0 -6.82 727241
18 | aleoholkilled 490 0 -6.82 72,11
19 | region_long 490 0 1 12
20| CH 0 0 0 [
M| cH 0 0 0 [
22| Cx2 0 0 0 [
23| C23 0 0 0 [ w

Delete the terms alcohol.accidents and alcohol.killed from the models in the

Equations window, in order to fit a random intercept model.

= Click on cons.accidents in the Equations window

= In the X variable window, click in the k(region_long) box to specify the
random variation among regions

= Repeat for cons.killed

cons.accidenis -

Fixed Parameter

delete Term

Done

Note that now a 3™ level covariance matrix is also to be estimated, including the
level-3 variances of the two intercepts and their covariance. When running the
model, the following output is produced:
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=¥ Equations

T Poisson( 7, _;l'.ﬁ:)

resp,; ~ Poisson(r;,)

log( glj.k) =logepop et B k-::mls.?u:-::i(leutssl.j.;c
B =-6.453(0.044) +v

log(7y;,) =logepop,y;, + Byecons killed,,
Bor, =-8.382(0.028) + v,

Vi 0.025(0.010) 0.092(0.021)

cov |TeSP gl Tyw | = | 151631572 T
resp ol 7o 2.898(0.556) [ izt Ej.k] 3.248(0.332) 7y,

2k

Hame | Fonts | + - | Add Ierm|§stimates| Honlinear | Clear | Hotation | Responses  Help |

A significant regional variation of both road accidents and road accident
casualties and a significant covariance between the two intercepts are obtained.
However, the regional variation of the intercept is higher for the number of
persons killed. Moreover, the covariance between responses (p) and its
significance is reduced. We may conclude that the variations of accidents and
persons Killed follow the same trend both at national level and within different
regions i.e. some of the covariance between accidents and persons killed is
situated at the regional level.

The final stage of the modeling concerns the introduction of a random slope.

Click on the Add Term button of the Equations window

In the Specify term window, select alcohol from the variable drop-down list
and click on Add Separate coefficients, as shown above.

Right-click on the Qv term in the Equations window and select Set diagonal
matrix from the menu displayed.
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=¥ Equations E”EWE
resp,, ~ Poisson( 7, ;) £
respy ~ Potsson( 7;,)

log( ;) =logepop ; + Sy, cons.accidents,, + 3;;alcohol.accidents,,
Box =Po TV

Bz = B2tV

log( ,sz.k} = logepop o T ﬁlkcmls.killed!.j.k + ﬁgkalcolml.killed!}.k

B =01 TV

cov| FE5P |7y ke

resp | Ty

L =03 TV
¥ ok
Ve[ N0, Q)
2
v 2k set Full matrix v
1 cancel 2
3 rra—0y23 Op3

L Fir

= | G715

0.3
P [7 T :gk]

GO i

n

Hame | Fonts |+

Add Term | Estimates  Honlinear | Clear | Hotation  Responses  Help I

By setting a diagonal matrix, the covariances among intercepts and/or slopes
are all assumed to be equal to zero. Although a number of limitations might be
considered to arise from this assumption, in the framework of the present
demonstration it is adopted mainly for practical reasons (i.e. numerical
instabilities and convergence problems were encountered in the full matrix

consideration).

Consequently, the Equations window will now look like this:
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=¥ Equations

resp ;- Poisson( 7, j.k)

respy, ~ Poisson( 75,)

log( ,—;lﬁc) =logepop et B kcmls.accideutsl.jk + B, kﬂlCﬂ-llGl.ﬂCCi(lElltSUk
B =01 ¥V

B =2 T ¥u

log( ,—;Eﬂc) =logepop T ﬁukcmls.lcilleclgk + ﬁ%alcolml.killedijk

Boe =0 TV

Lo = B3 TV
- - = 3 -
¥k Gyo
&
Y| ~N0. Yy 0 o}
2
¥ 3k 0 0 o
51 0 0 0 o
cov| TSPyl Ty | = | ET [ll§
‘ 0.4
resp ol 7o plmumal ~ amayp
Hame | Fomts | + | - | Add Term | Estimates | Honlinear | Clear | Hotation | Responses | Help

= Click More to run the model. The following results are displayed:
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3 Equations FEX
resp Poisson( ,le.k) =
resp g ~ Poisson( ry;)

log( ﬁlﬁc) = logepop et }gnkcons.accidentsu.k + B, kalcolml.acci(lentsij.k

Bor =-6:472(0.037) + v,

Lo =-0.024(0.005) + v,

lng(gzj.k) = logepop T ﬁlkcons.killed!}.k + /()’Bkalcolml.killedgk

P =-8.380(0.026) +v

B =-0.005(0.002) +v

Vg, 0.052(0.014)
Vil ~N@©0, Q) o= |° 0.009(0.007)
Vo, 0 0 0.000(0.000)
Voar 0 0 0 0.000(0.000) ]
lcov |VesP 13-;.;| Tuye| = 14.575(1.542 VT 15k
resp ol 7o 3.667(0.564) [7,m zj.k]”'j 3.344(0.339) 72
Hame | Fonts |+ | - | Add Ierm|§stimatesl Honlinear  Clear Hotation | Responses  Help |

In order to display more decimals in the values of the variance matrix:

* In the Options main menu, select Numbers(display precision and missing
value code)

= In the Settings window that appears, set digits after decimal point equal to 5
and click Apply. Then click Done.

Wiorkzheet Humbers T Directoties

=¥ Settings T”E”X|

Specify nurmerncal precizion to be uzed when displaying numbers

{+ bdp/adp format (" signif digit farmat

# digits before decimal point | 4 j I_

# digits after decimal paint 5 j
exponent [

Set all values aof to be mizzing

Done | Cancel

The Equations window should now look like this:
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2% Equations

resp, ;- Poisson( /71j-sc)

resp; ~ Poisson( 7o)

log( glﬂc) =logepop T )()’U,cc:nns.ﬂc(:iclents!.ﬂc + ﬂ%ﬂlcnlml.ﬂccidentsz.j.k
B =-6.47545(0.03752) +v

Bz =-0.02514(0.00524) +v 4,

lmg(gzﬂc) =logepop T ﬁnkcmns.killeduk + )(;'%alcolml.killeduk

B =-8.38056(0.02621) + v,

P, ==0.00415(0.00246) + v,

¥ 0.01039(0.00727)

Ok
vi| ~NO, Q) : 0 =0 0.05311(0.01430)
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The fixed effect of enforcement on the number of accidents is higher compared
to the related effect on persons Killed. The regional variation of the effect of
alcohol enforcement effects is only significant as far as the number of accidents
is concerned. In particular, the effect of alcohol controls on persons killed does
not vary significantly among regions. These results are further interpreted in
section 2.5 of the Methodology report.
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2.6 Structural equations models

As explained in the methodology report, the application of a structural equation
model requires large amounts of data and also of a certain quality. In practice,
these models are only applied in studies that have been planned to produce
data suitable for this type of analysis. Moreover, the conduction of structural
equation modelling requires a high level of expertise, which to deliver would
exceed the scope of the present document. A number of good tutorials,
exclusively dedicated to structural equation modelling are on the market (c.f.
www.ssicentral.com ). Consequently it was refrained from presenting the
practical instruction for recapitulating the example in the methodology report.

2.7 More complex data structures

In the respective section of the Methodology report (D7.4), several particular
cases of multilevel models, mainly referred to as "non-hierarchical" models were
presented (i.e. cross-classified structures, multiple membership structures).
These issues were mainly presented for completeness' sake and no practical
examples were provided; non-hierarchical structures are seldom encountered in
road safety research

2.8 Bayesian estimation in multivievel modelling

Estimation methods based on simulation techniques (i.e. Monte Carlo Markov
Chain methods, bootstrap methods) for fitting these models (and multilevel
models in general) were presented. The models for dealing with these
structures are still under further development. Moreover, a detailed presentation
advanced estimation methods (e.g. simulation techniques) is beyond the scope
of this document. Consequently, no manuals are provided for this section.



Chapter 3 - Time series analysis

3.1 Introduction to time series models
Ellen Berends and Frits Bijleveld (SWOYV)

In the SafetyNet project, many road traffic data are collected that consist of
repeated measurements over time. Examples are the annual or monthly
number of road traffic accidents in a country, its annual or monthly number of
road traffic fatalities, its annual or monthly number of vehicle kilometres driven,
its annual or monthly values on safety performance indicators, etc., all
repeatedly measured over a certain period of time. Whenever one is interested
in studying and analysing such developments of one and the same
phenomenon over time, special issues arise not encountered in cross-sectional
data analysis. An important issue is that the residuals, although assumed to be
independent in the (cross-sectional) model specification, as demonstrated in the
methodology report may in fact not be independent of one another. This
violation may result in unreliable test statistics, and thus unreliable inferences
from the models.

The problem of dependencies between the residuals in the traditional linear
regression analysis of time series data may sometimes be solved in a number
of different ways:

e additional predictor variables can be added to the regression of the
dependent variable on time such that the dependencies are removed from
the residuals, and/or

¢ the relation between the dependent variable and time can be analysed with
generalised linear models and/or non-linear models, and/or

e the dependent variable can be analysed with a special family of analysis
techniques collectively known as time series models. The most common
dedicated time series analysis techniques used in road safety analysis are
ARIMA, its special case DRAG and state space models.

In the manual, we only deal with the dedicated time series methods. As in
principle the DRAG method can be regarded as a special case of ARMA-type
modelling, this approach is also not covered. However, linear regression model
is included because it is used in the methodology report to demonstrate the
identification and consequences of dependency of residuals and it is well
known. Because linear regression is so well known, it is assumed to be a better
starting point than dedicated time series analysis methods, namely ARMA-type
models and state space models, which are discussed as well.

The first part of the chapter on Time Series Analysis shows when linear
regression can be used for repeated measurements over time. It is
recommended to read this chapter before starting with one of the dedicated
time series methods. Austrian fatalities from the period from 1987 to 2004 was
used as example to show which tests have to be carried out to test the Gauss-
Markov assumptions, which are the conditions for linear regression. Linear
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regression is not the preferred model for the Austrian fatalities due to heavy
violations of two basic assumptions.

In the parts about ARMA-type models and state space analysis in the
methodology report, several data series were used as examples of using the
dedicated time series analysis techniques. We name a few interesting
examples. An ARMA-type analysis was conducted on the monthly total number
of French fatalities collected between 1975 and 2001. It was shown that next to
various seasonal and economic variables, the number of fatalities is also
affected by certain media events. Furthermore, the presidential amnesty that is
usually given to traffic offenders during the French elections appeared to be
associated to an increase in fatalities. A state space type of analysis was
carried out on the monthly number of drivers killed or seriously injured (KSl) in
the United Kingdom. It was shown that the number of KSI depends on the
introduction of the seat belt law, the petrol price (as a indicator of mobility) and
seasonal influences. The introduction of the seat belt law resulted in a 21.1%
reduction of the number KSI in the UK.

Numerous software packages can be used to carry out the above mentioned
analysis techniques. The choice of one software package for this manual does
not mean that the user, after having worked with this manual, could not apply
this type of analysis in other software environments or new versions of the
same software. The software is just used as a means to demonstrate the
opportunities that dedicated time series modelling offers to road safety analysis
and to instruct in the design and interpretation of classical linear regression,
ARMA-type models or state space models.

For linear regression and ARMA-type models, SPSS was retained because it is
a mainstream statistics program and it is very suitable for these analysis
techniques, in addition to being a user-friendly software (http:///www.spss.com).
Other existing dedicated softwares, such as E-views, R and SAS Proc ARIMA
are also appropiriate for performing ARMA-type analysis).

The three probably best-known software packages which can be applied for
state space analysis., i.e. Ox/SsfPack, STAMP, and SAS Proc UCM, while
noting the availability in other packages, such as Splus, R, matlab and
Mathematica, will be shortly compared below. SsfPack contains a lot of routines
for state space analysis, and can be used in the Ox programming environment.
By programming the user has a lot of freedom in modelling. A disadvantage of
Ox/SsfPack is that it requires in addition to experience in statistics and
modelling , some experience in programming. STAMP is a user friendly, menu-
driven package specifically designed for state space analysis and is therefore
more appropriate for instructing the possibly inexperienced road safety analist in
state space modelling. SAS Proc UCM can handle univariate models and in the
future multivariate models as well (Yaffee, 2003), whereas STAMP 6.0 handles
both univariate and multivariate models. Yaffee (2003) states that SAS Proc
UCM is "powerful and easy to use" and that "STAMP handles a wide variety of
models". Furthermore, STAMP has good graphical options, can display
forecasts with error margins, and its algorithms are fast. Judge and Ninomiya
(2000) make the following remark, which is very relevant in the light of the
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manual's objective: "even those who are inexperienced with structural time
series modelling can use STAMP to familiarise themselves with this approach".
It was this, its relatively small size (and price), and its dedicatedness to state
space analysis which made us choose STAMP for structural time series
modelling.



3.2 Classical linear and non-linear regression models

3.2.1 Classical linear regression models

Christian Brandstitter and Andrea Angermann (KfV)

3.2.1.1. Introduction

The goal of this chapter is to demonstrate how to apply linear regression
models to Austrian road accident fatalities data and how to determine if a trend
in the counts of road accident fatalities can be derived. Some practical
computations using SPSS software (version 14.0) on these data are presented.
However, the different views on the assumptions underlying data testing are
considered more important than the resulting regression line with its
parameters.

Screenshots and descriptions are used to explain the steps and results in the
process of data analysis; for more detailed information on the theoretical
background, please see the corresponding theorie chapter. For further
explanations regarding SPSS, we refer the reader to the SPSS user manuals.

3.2.1.2. Dataset description

Austrian data from the period from 1987 to 2004 is analyzed in this tutorial. The
raw dataset imported to SPSS is shown in the following table. The time variable
“Y/M” and number of “Fatalities” can be seen.
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The option “Variable View” displays all definitions and attributes of the used
variables in the data set:
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3.2.1.3. First heuristic view of data

In order to get a first impression of the time series data, it is recommended to
generate a simple scatter plot of fatalities over time.
screenshots the necessary steps for this procedure in SPSS are being

In the following
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explained. Simple scatter plot has been chosen because the data only contains
one data series.

Choose from the menu “Graphs” the option “Scatter/Dot...”. After choosing a
“Simple Scatter”, click “Define”. Mark and click the variable “Year/Month” in the
X-axis, the variable “Fatalities” in the Y-axis. After clicking “Ok”, the SPSS-
processor starts with producing the scatter graph which is shown in Output 1.
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The figure displayed below shows the structure of data at a glance:

decreasing development of counts of fatalities over time.
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A first attempt to describe this development mathematically could be carried out
by fitting a simple linear regression. The next step to get a better impression of
the data is to generate a linear regression line in the scatter plot.
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For this step click on the graph, click the right mouse button and open the
“SPSS Chart Object”. In the now new opened window “Chart Editor”, you
choose “Elements” and click “Fit Line at Total”. In the new opened window
“Properties” you choose “Linear” and click “Apply”. As a result you can see the
linear regression line in the chart and you can close the “Chart Editor” in order
to return to the “Output”-window.
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The scatter plot above may be roughly interpreted with the help of a linear
regression model. At this stage of data processing there is no reason for not
applying this model; therefore next steps and analyses should be started.

3.2.1.4. Linear regression:

The linear regression is generated with road accident “Fatalities” in Austria as
dependent variable and “Year/Month” as independent variable. The time series
starts in January 1987 and ends in December 2004.

The next figures show the necessary operations for calculating a linear

regression:
Choose from the menu “Analyze” “Regression” and click “Linear”.
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Then mark and click the variable “Fatalities” in the “Dependent” field, the
variable “Year/Month” you click in the “Independent” field. Then click the button
“Statistics”:
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In the “Linear Regression: Statistics”-window choose the regression coefficients
“Estimates” and “Confidence intervals”, as well as the option “Model fit” and the
residuals “Dubin-Watson” and “Casewise diagnostics” [1]. Define the “Outliers
outside:” with “3” standard deviations and click “Continue”.
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The result (see the Output-window stated below) shows a highly significant
decrease in the count of fatalities; this is explained in the coefficients-table:

» The variable “Year/Month” is negative (-0.520 for the standardized
coefficient Beta, the unstandardized coefficients can be used on the original
data with fomula 3.2.1 in the corresponding chapter in the methodology
report) and shows a very “high” significance of < 0.0001: a significance
value of less than 0.05 means that the variation explained by the model is
not due to change.

Furthermore, the regression model has a reasonable fit:

= The ANOVA table reports a significant F statistic because its significance
value is below 0.05.

= R Square in the Model Summary table shows that the regression explains
27.0% of the variance of the data.
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3.2.1.5. Condition testing (Gauss-Markov Assumptions)

The testing of the Gauss-Markov assumptions can be done by clicking “Plots” in
the linear regression. The underlying assumptions are [1]:

= The random errors are distributed normally.

= The value for the error term associated with any different observations is
independent. The error associated with one value of y has no effect on the
errors associated with other values. This means that all autocorrelations of
the errors are near 0.

= The variance of the error term is constant across cases (x) and independent
of the variables in the model. This is called homoscedasticity, or
homogeneity of the variance of error. An error term with non-constant
variance is said to be heteroscedasticit.

= The prediction error € is uncorrelated with x, the independence assumption.
This assumption is fullfilled when dealing with road accident time series. As
we are dealing with univariate data in this example the problem of co-
linearity is not relevant.

For all these assumptions visual and numeric representations are being
generated (based on statistic inference). The statistical tests give detailed
information whether the statement is valid or not. The advantage of the
graphical analysis is that deviations and type of deviations from the tested
conditions/assumptions can be detected more easily.

Normal distribution of random error

For a simple overview of the distribution of the variables, the graphical
representation can be used. Choose the linear regression from the menu
“Analyze” and choose the dependent and independent variable respectively, as
described above. Then click the button “Plots”.
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A new window “Linear Regression: Plots” will be opened. Choose for the
“Standardized Residual Plots” the options “Histogram” and “Normal Probability

Plot”, and then click the button “Continue”:
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The results you can see in the “Output”-window:
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The assumption of a normal distribution of random error can be confirmed with
the two graphs stated above.

For the numeric testing the 1-Sample Kolmogorov-Smirnov test [1] has been
used, this is an inference statistic using a non-parametric test. If the
Kolmogorov-Smirnov test is not significant, the assumption of a normal
distribution of random error can be confirmed.

To start this test, choose from the menu “Analyze” the “Nonparametric Test” “1
Sample K-S”. You can see the result in the Output-Window.
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The result stated above shows that also the not significant Kolmogorov-Smirnov
test (Asymp. Sig. (2-tailed) = 0.316) confirms the normal distribution of the
random error.

Independency of Variables

The autocorrelation function (ACF) is used to verify the assumption that the
error term associated with any different observations is independent of any
other. For these computations both a graphical and a numeric method exists.
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To start the computation of the autocorrelation function, choose the option
“Time Series” from the “Graphs”-menu and click “Autocorrelation”.

o.f Linear Regression_Manualdatal.say [DataSet2] - SPSS Data Editor =1 =i
File Edit Yiew Data Transform Analyze | Graphs Ubilties Swindow Help
m | « | R Chart Builder...
eld|a m] | k] s et  Hal|
i | »
Rl fatalities R Var var var Var var var war Va
1| JaN 1587 47 Sbta
2| FEB 1987 B5 Ling. ..
3| MAR 1987 72 Area...
4| APR 1987 100 Pig...
5| may 1987 95 High-Low...
6] JUN 1987 115 Pareto...
7| JUL 1987 186 Contral...
8| AUG 1987 131 Boxplct...
5| SEP 1987 120 e
10] OCT 1987 182 Population Pyramid...
11| MOV 1987 108
12| DEC 1967 109 f;j:::ii“
13| JAK 1988 112 e
14| FEB 1988 103 o
15 MAR 1988 E5 Sequence. ..
16| APR 1935 107 ROC O
17| MAY 1938 132
18] JUN 1988 140
19 JUL 1935 165
20) AUG 1933 144
21| SEP 1988 130
22| OCT 1938 128
23| NOw 1938 98 =]
4] ¥ [\Data View £ variable View [ Bl ] I
Autocorrelations |SPSS Processor is ready |7| | | | &
The variable you choose is the dependent one (“Fatalities”): click in the
“Autocorrelation”window the button “Options” and define there the maximum
number of legs to “24”. Close this window with “Continue” and start the analysis
in the “Autocorrelation” window with the button “OK”.
x|
x
&2 Y ear/Manth [1H] Wariables:
'Fatalltles — | tl airiunn Mumber of Lags: |24|
E Standard Error Method
ﬂl % |ndependence model Cancel k
Cance | " Bartletts approsimation Help |
r— Transform |

I Matural log transform

Help

Dicol I Differerice: I'I_

i Digplay

¥ Autocomelations [T Seasonally difference: I‘I_

[ Partial autocomelations Cumrent Periodicity:  Mane B

™| Bisplay autozonelations at periodic lags

A clear seasonal pattern of the autocorrelations can be identified in the diagram
stated below with large peaks at 12 and 24 month. this pattern also exceeds the
confidence band. Through this test the assumption that the error term
associated with any different observations is independent of any other, can not
be confirmed.
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ilZ Dutput2.spo - SPSS Viewer

-1ol x|
File Edt View Data Transform Insert Format Analyze Graphs Ubities Window Help
clalmE|pl B o bk o & |
€] =] (0] === \
B -{E] Output Bl
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[5PS5 Processor is ready [ [ [ 4
i'Z Dutput2.spo - SPSS Yiewer (=] 3]
File Edt View Data Transform Insert Format Analyze Graphs Utiities Window Help
olal@n| ] B el Ok of & &)
e[»] +|=| &lF] z[=(=(
B (5] outeut ACF -]
- {E] Graph
(] Title
Hotes
2 ﬁﬁs:at?er Ot ZRELESTM Model Description
- {E] Regression
e [E] Title Model Mame MOD_1
0 hotes Series Name 1 fatalities
(& Variables Erterec/Removed Transiormation NG
" @Mndelsummarv Maon-Seasonal Differencing %
L) ANOVA 0
o[ Cotlicients
5 El ACF ﬁeas;narlg)\ﬁerem‘llg i 0
X Thie ength of Seasonal Perio Mo periadicity
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[ Case Processing Summary
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This, Independencefwhite noise)
L Autocorrelations
[y ACF
Display and Plot All lags
Applying the model specifications from MOD_1
4 _>l_I

[5PS5 Processor i ready ] [

The same result is obtained with the following Box-Ljung-statistics, which is part
of the executed ACF and is also presented in the Output window below. The
Box-Ljung test tests the significance of autocorrelation at each lag. All 24 lags
show a highly significant autocorrelation.
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i Dutput2.spo - PSS Viewer =[O =]
File Edit Wiew Data Transform Insert Formak  Analyze Graphs  Utiities Window Help
claBE] B E of Ok @f & &
|| +|=] &|O ?IE.'IEH
ERCET |
= - {E] Graph
LB Te fatalities
|y Motes
i |y Seatter of ZRE_ABS ¥M
=& Regression
[ Tile Autocorrelations
P e[l Notes
! Wariahles EnteredRemaved Sefiee falales
g Madel Summary
@ ANONL Autocarrel Box-Ljung Statistic ¢
@ Coefficients Lag ation Std. Error’® Value df Sig.
&--[E] acF 1 542 il 90,381 1 ,aoa
- Title: 2 a0z 067 145,872 2 .aoo0
g Notes 3 7 BT | 188,019 3 il
L Moded Description 4 109 JB7 | 170,881 4 ,oon
5 :g e rosesshi SRl 5 024 067 | 170805 5 000
_____ e 8 -0t 0BT | 172,661 & 000
(5 Autocorrelations 7 - 003 067 | 172,662 7 000
{5 ACF 3 et JOBE [ 174542 ] oo
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18 a0 065 | 549,308 16 oo
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24 00 Q064 | 7E5142 24 Jalil]
a. The underlying process assumed is independence (white
noise).
b. Based on the asymptotic chi-sguare approximation e
< | _’lJ

[SPS5 Processer is ready [

Homoscedasticity Assumption

The homoscedasticity assumption specifies that the variance of the error term is
constant across cases and independent of the variables in the model. This is
the last tested and described assumption in this chapter; again a graphical and
inference-statistical method is being used.

To compute the necessary plots, a number of new variables have to be created
with the regression procedure.

Choose the linear regression model as shown in the example above, before
clicking “OK?”, click the button “Save”.

i Transport
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M Linear Regression ) x|
Dependent: 0k |
|3 Fatalities

425 vearMorth [YM]
Paste |
Black 1 of 1
Independents): Cancel |

&5 earManth [YM)] Help |
Fethod: I Enter X l

Selection Variable:
I Fule:., |

Case Labels:

WwLS Weight:

Statistics...l Flots... | Save... I Dptions...l

[

In this new opened window you choose the predicted values “Standardized” and
the “Unstandardized” and “Standardized” residuals. Go on with the button
“Continue” and then click “OK” in the “Linear Regression” window.

Linear Regression: Save | 5[

~ Predicted Values————— [~ Residuals Eontinuﬂ
™ Unstandardized W' Unstandardized ;
W Standardized ¥ Standardized &LI
I Adusted [™ Studentized Help |
I 5E. of mean predictions [~ Deleted

L [ Studentized deleted

I~ Mahalanobis ~Irflusnce Statistics

™ Cook's I™ DfBietals)

I Leverage values [™ Standardized DB etalz]

I™ DiFit
[ Standardized DFFit

~ Prediction [ntervals
I Mean [ Individual ) )

. [~ Covariance ratio
Confidence |nterval: I i

- Coefficient statistics

™ Create coefficient statistics

% Create anew dataset

[atazet rame: I

7 Write & new data file
Fie.. |

 Export model informatian to =kL file

| Browse |

™ Include the covariance matrix

For the three new variables RES 1, ZPR_1, ZRE_1 see the data view in the
SPSS-data file:



3.2 Classical linear regression models

i&f *Linear Regression_Manualdata_forPrints1_zwischenlosung.sav [Dataset1] - SPSS Data

File Edit Wiew Data Transform #Analyze Graphs  LUklities  Window  Help

=ale E ol4 =[k| al Fel BlelE sl

[1:RES 1 75602437 1365754
il Fatalities war wait war vat__ ||
1| Jan 1987 47 |
2| FEE 1987 65 [
3| MAR 1987 72
4| APR 1987 100 |
5| MAY 1987 |
B| JUN 1987 15|
7| JuL19a7 186 |
8| AUG 1987 131
9| SEP 1987 120
10] ocT 1987 162
11| MOV 1587 108 |
12| DEC 1987 109 |
T3]\ veta Vew 4 VBBV | sy
|SPSS Processor is ready =l [ | 4

The three new variables are used to generate the variables “square of
standardized residuals” and “absolute value of standardized residuals”. To
generate them, choose from the menu “Transform” “Compute”.

inear Regression_Manualdata_forPrintsl_zwischenlisung.say [Datasetl] -5 or i ! Ellﬂ

File Edit Wiew Data [Trransform fnalyze  Graphs  Ltlities  Window Help

clale| & 5|5 v/

e Recode
|1:RES_1 Wisual Bander ...
il Court. .. IPR 1 war war war war |T|
1| AN 1937 Rank Cases. .. -
5| FEEB 1957 Automatic Recode. ..
3| MAR 1987 Date(Time. ..
4] APR 19587 Create Time Series...
&l may 1087 Replace Missing VYalues. ..
&l JUN 1957 Random Mumber Generators.. .
7 JuL19ay Rur Pending Transforms
8| AUG 1937 131 ) 1 "'"'"_
9| SEP 1937 120
10| OCT 1987 162 |
11 MOW 1987 108 !
12| DEC 1987 109
131 JAN 19 ' =
2T ]\pata View A Variable Vi | il
Compute |SP35 Processor is ready | [ [ [ 7

In the newly opened window “Compute Variable” you name the target variable
“ZRE2”. Then you have to enter the numeric expression: Mark and click from
the list of variables the “Standardized Residual” (ZRE_1) in the numeric
expressions field, insert from the key pad * (for multiplication) and put once
more the ZRE_1 variable in the numeric expressions field. Click “OK” for
starting the computation process.
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x
Target Y arable: umneric Expression:
IZHE2 = |ZRE_1"ZRE_1 =]
Type & Label I _I
-
%YEaHM onth [vh] Function group:
& Fataliies o <] Z]8ls] ] ‘
fUnstandaldizad Flesid _I ﬁlﬁl il_sl & Avithmetic
f Standardized Predicte — EE:V?;EIE:CB””&' COF
E Standardized Residua El _=J_=| il_zl,a_ Current Date/Time
_fl il_'l _UI_ Date Arithmetic
Wl o~ Date Creation
—I —I—UJ L Date Extraction LI
;I Functions and Special Yariables:
=
‘ If... | [optional case selection condition] ‘
oK I Paste | Rezet | Cancel | Help |

To compute the last variable (ZRE_ABS), choose from the menu “Function
group” the type “All” and double-click “ABS” to put it in the field “Numeric
Expression”. In the given bracket mark and click the variable “ZRE_1”"
(standardized residual). Click “OK” to compute the variable ZRE_ABS.

Il Compute Yariable B}

x|
Target Variable: umeric E xpression:
IZHE_ABS = |ABS[ZRE_1) ;I
Type & Label... | _I
&2 earManth [YM] Function group:
gFatalltles = ] ] =
Unstandardized Resid
fStandardized Eredictel _I ﬁl 55 ilili EDF & Mancentral COF
fStandardized Residua _I _=J:| il 2121 Eﬁ:;:[s[l)o‘;eﬂime
& ZRe2 JOeE [ T e Date Arithmetic
Y [ ate Creation
=] = 0] _pekete | E Date Extraction 4|
4B [numexpr]. Numeric. Feturns the =+ | Functions and Special Yaniables:
absolute value of numexpr, which must be
nUMEic. Arsin
Artan
Cos
Exp
Lgi0
Ln
LI Lhgamma
tod
Fnd
‘ If... | [optional case selection condition] ‘ Sin
Sart .ﬂ
Qg i Paste | Feset | Eancell Help |

As a result five new variables have been retrieved.
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ntitled [DataSet3] - SPSS Data Editor = IDIﬂ
File Edit Wew Data Transform  Analyze Graphs  Utlities  Window Help
c|u|e] B | (k| & | BlelE el
[1:ZrRE2 |981670353463612
il Fatalities RES_1 IPR_1 ZRE 1 war war =
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|SPSS Processor is ready | | | v
Descriptions and definitions can be seen in the “Variable View”-window:
Untitled [DataSet3] - SPSS Data Editor o |E| ZI
File Edit Wiew Data Transform Analyze Graphs Utilities ‘Window Help
=Bl B s =] &) e Bl wlel
Marme Type Width | Decimals Lahbel Walues Missing Columns Align Measure =
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7|ZRE_ABS |Murnetic &} 2 Absolute Standardized Residual MNaone Maone 10 Right Scale
i
g
10 £
11 -
12 =
4| |\ Data View ) Variable View / 14 | >|_I
|SPSS Pracessar is ready [ [ [ A

With these new variables the assumption testing can be started. The scatter

plots are derived with the same steps that are already explained above.
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All four plots, especially the last two, show a distinctive pattern that indicates

heteroscedasticity.

To complete the analysis with an inference-statistical model, the White-Chi
Square test [1] is used. To compute this test, “R square” of the regression of the
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time series on “Squared Standardized Residuals” (ZRE2) is needed. Start the
“ZRE2” as dependent and

linear regression as explained above with

“Year/Month” as independent variable.

M Linear Regression I

x|

.;a'?; Year/Month [vYM] Dependent:

fFatalities [Fatalities] il S quared Standardized Residual [ZRE 2] L |

?Unstandardized Resid  —piack 1 of 1 % R

Standardized Predicte . Reset |
Frevious Next

fStandardized Fesidua _I

yAbsolute Standardizec Indpendent[s]: el |
2 VearMonth [YM] Help |
Method: IEnter 'I

Selection Y ariable:

I— Hule.., |
Case Labels:
WLS Wweight:
Statistics...l Flats... | Save... | Options... |

The output of “Model Summary” contains the R square with 0.052.
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The actual test can be easily done in Excel. Enter in a new excel spread sheet
the computed R-square and the number of cases (n=216 in our example). The
White Chi square is the multiplication of both.

EH Microsoft Excel - White_Chi_Square-Test.xls ) |EI|1|
@ Datei Bearbeiten Ansicht  Einfilgen  Format  Extras  Daten  Fenster ¢ Adobe PDF Frage hier eingeben D
DEHRSRAIVHB| s 2B-¥9-0-Bez-4i@am: (o= nnul
Bl F | = | % £ %0 49 | B i E Sl Ea R W B S S | @ By g8 | Y9 eearbeitung zuriicksenden,., Bearbeitung beenden.., E
RUMDEN > X A& =B1"B2
A 3] C | ] | E | E | G | H | | J 3‘
| 1 |[R-Square= L @ 0,052 J
2 |Mumberof Cases=} 216
3
4 |White Chi-Square=|=B1"B2] il
5 % -
I<P< » M|4Tabellel ; Tabells2 4 Tabelled |<| | Ll
Zeigen MF v

To calculate the “Chivert” “1-alpha”, insert the Excel-function “Chivert” in the cell
B6 and put in brackets the White Chi square (cell B4) and, after the semicolon,
“1” for the number of the degrees of freedom.
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E Microsoft Excel - White_Chi_Square-Test.xls B 1ol x|
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The result of “1-alpha” presents a highly significant deviation from the
homoscedatisticity-assumption:

E Microsoft Excel - White_Chi_Square-Test.xls . 1O x|
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| 1 |R-Square= 0,052
| 2 |Mumber of Cases= 216 J

g
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| B |1-alpha= I 0 DDDSDSBQ! %

g -
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3.2.1.6. Conclusion

The conclusion of the results from the presented tests is that linear regression is
not the preferred model in this case. Due to heavy violations of two basic
assumptions of the model to fit time series data, a different and more advanced
model specialised on time series data should be applied and will be
demonstrated in the following chapters.

7 Transport
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3.2.2 Generalized linear models (GLM)

As explained in the Introduction, this manual focuses on state-of-the-art
dedicated time series techniques. Generalized Linear Models (GLM) are a
useful and flexible technique that can be applied for time series analysis,
however they do not by definition take into account the time dependence
between observations; these dependences can only be considered by
extending the GLM approaches with time series properties. In this sense, GLM
are not dedicated time series techniques, like the ARMA-type and state space
techniques. Consequently, no manuals are provided for GLM in time series
analysis.

3.2.3 Non-linear models

Similarly to the Generalized Linear Models (GLM), Non Linear models are also
a possible technique that can be used for time series analysis. However, they
also can take into account the time dependence between observations only by
extending the models accordingly; therefore they can not be considered as a
dedicated time series techniques, like the ARMA-type and state space
techniques. Consequently, no manuals are provided for Non Linear models in
time series analysis.

3.3 Dedicated time series analysis in road safety
research

The respective section in the methodology report is an overview section that
does not contain empirical examples. Consequently there is no manual part for
this section.



3.4 ARMA-type models

Ruth Bergel and Mohamed Cherfi, INRETS

3.4.1 Introduction

The objective of this part of the manual is to introduce technical aspects of time
series modelling using ARMA-type models, applied to road safety analysis.

The section is structured in three parts. In Section 3.4.2, it is briefly recalled to
the reader that he should refer to the respective section 3.4.2 of the
Methodology Report, in which several ARMA models were fitted on simulated
stationary datasets. Section 3.4.3 presents an example of ARIMA model
estimated on non seasonal (yearly) real data, without any use of exogenous
variables. And in Section 3.4.4, ARIMA models estimated on seasonal
(monthly) real data have been chosen and exogenous variables, whether
intervention variables or explanatory variables, have been succeedingly
introduced in the model.

Each case of real data retained in this manual is a non-stationary case: of first
order (the mean of the process varies over time) and of second order (the
variance of the process varies over time), this being the general case for risk
indicators in the road safety field.

Because of that non stationarity in variance, the dependent data were
systematically Log-transformed. As for the exogenous (independent) variables,
which are always considered as known (non stochastic, or in other words, not
under measurement errors), the ones retained for measuring the traffic volume
or the petrol/gasoline price were Log-transformed; whereas the intervention
variable was used in a linear form (see the Methodology Report).

The detailed specification of the ARMA-type estimated models cannot be found
in the manual but is described in the Methodology Report. Note that
explanations for the ARMA structure, applied to the stationary datasets derived
from the initial ones, are to be found in section 3.4.2 of the Methodology Report.

For each of the data cases, we first followed the succeeding steps for fitting
pure ARIMA models on the datasets:

Data description

Model identification

Model estimation and validation

Graphical results and additional (normality) test

We then used external information by means of adding intervention and
explanatory variables into the pure ARIMA models in view of taking account for
certain risk factors, road safety measures or special events.

For each example the parameters of the exogenous variables were interpreted,
and the gain in fit statistics was measured.
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SPSS (Version 14.0) was used for this work.

Regarding the output obtained after each model estimation, the following results
are systematically given:

- three tables (model fit, model statistics, and ARIMA model parameters),

- the ACF plot (and PACF plot) of the residuals

- two graphs (the observed and the fitted series on the one hand, and the
residuals on the other hand),

- and the results of additional tests of normality of the residuals.

The first of the three tables provides Goodness-of-Fit Measures™ (which enable
to evaluate the model’s empirical performance):

= Stationary R-squared
= R-squared

= RMSE

= MAPE

= MAE

= MaxAPE
= MaxAE

= Normalized BIC

The second table provides mainly the Ljung-Box statistic** (which enables to
evaluate the model specification),

The third one provides the Model parameters (the estimated model parameters
and their significance).

As for the normality of the residuals test, two plots were systematically given
(the histogram and the QQ-plot), and the non-parametric Kolmogorov-Smirnov
statistic ***

(*) The first of the three output tables provides Goodness-of-Fit Measures:
Goodness-of-fit statistics are based on the original series Y(¢). Let k= number of parameters in the model,
n = number of non-missing residuals.

= Stationary R-squared. It compares the stationary part of the model to a
simple mean model. This measure is preferable to ordinary R-squared when there
is a trend or seasonal component in the series.

Sz -Z@)’
Ry =1-L ——
D (AZ(t)-AZ)

Where:
The sum is over the terms in which, both (Z () — Z(I)) and AZ(t) —AZ are not missing.
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AZ is the simple mean model for the differenced transformed series, which is equivalent to the
univariate baseline model ARIMA(0,d,0)(0,D,0).

= R-squared. An estimate of the proportion of the total variation in the series that is
explained by the model.

R Yo=Y
> ¥m-Y)’
= RMSE. Root Mean Square Error. The square root of mean square error.
S ¥O-Y@)
n—k

RMSE = \/
= MAPE. Mean Absolute Percentage Error.
MAPE = % ORI CONTG
= MAE. Mean absolute error.
MAE = %Z|Y(t) ~Y (1)

= MaxAPE. Maximum Absolute Percentage Error. The largest forecasted error,
expressed as a percentage

MaxAPE =100 max(|(Y(t) Y/ Y(t)|)

= MaxAE. Maximum Absolute Error. The largest forecasted error, expressed in the
same units as the dependent series

MaxAE = max([¥ (1)~ ¥ (1))

= Normalized BIC. Normalized Bayesian Information Criterion.

NormalizedBIC = n(MSE) + k 2
n

(**) The second table provides mainly the Ljung-Box statitistic (which enables to evaluate the
model specification),

Q(K)=n(n+ 2)5‘, r’ l(n—k),
k=1

where 7, is the kth lag ACF of residual.

O(K) is approximately distributed as } 2 (K —m), where m is the number of parameters other than the
constant term and predictor related-parameters.

(*™™)The two one-sided Kolmogorov-Smirnov test statistics are given by:

D’ = max(F,(x)— F(x))
D, =max(F(x)-F,(x))

n

where F(x) is the hypothesized distribution.
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3.4.2 ARIMA models for stationary series (simulated data)

Stationary series are usually not found in the road safety field. Therefore,
simulated stationary data samples were used in a first approach, on which
ARMA models were fitted. The structure of these simple models is similar to the
structure of the more elaborated models which will be fitted on real road safety
data, as far as handling their stationary part is required.

The reader will therefore refer to the respective section of the Methodology
Report, in which the modelling stages are described and the modelling results
given.

3.4.3 ARIMA models for non seasonal series (Norwegian
Fatalities)

3.4.3.1. Data description

1. Start of analysis and data load

= First, we start SPSS.
Use the menu <File, Open, Data ...> to open the file 'Norw_Fatalities.sav'.

52 Norw_Fatalities [DataSet1] - SPSS Data Editor 1O x|

File Edit Wiew Data Transform Analyze Graphs LUklities ‘window Help

clalal Bl ool =k al Fel Bles sl

|1 NorwFatalities | 560
MonewF atali| LMo, Fatalitie]  YEAR DATE var war war var var VTI
1 560,00 633 19701970 _|
2 533,00 6,26 19711971
3 450,00 6,19 19721972
4 511,00 6,24 1973 (1973
5 509,00 6,23 19741974
] 539,00 §,29 1975 (1975
7 471,00 .15 1976 1976
g 442,00 6,09 1977 1977
g 434,00 607 1973 (1978
10 437,00 605 1979 (1975
11 362,00 589 1950 (1980
12 338,00 552 1951|1981 ~|
A [F]\Data View £ ‘Varisble View [ 141 | |
|SPS5 Processor is ready [ [ [ v

This data file consists of the annual number of people killed in road traffic in
Norway for the years 1970 to 2003 ('Norw.Fatalities') and of the logarithm of the
latter time series (‘LNorw.Fatalities'), and of two additional variables, labelled
YEAR and DATE (note that all variables are described in the Variable View).

2. Graphical diagnostics

The data are represented graphically in a time series plot. This will help show
up important features such as trend and, eventually, seasonality. The time
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series plot can also help deciding whether a preliminary transformation
(logarithmic transformation, filtering,) is required on the data.

e C(Click on Graphs..Sequence
e Move Norw.Fatalities into the Variables list box

i sequence Charks

&7 LNonw Fatalities Wariables: =
oMl YEAR, ot perindic [YE & Mo Fatalities

gaDate. Fomat "™y

Paste
Beset

Cancel
Time Axiz Labels:

|

— Transform

ElEEl

[ Matural log transform

[ Difference: I'l_
[T | Seazonaly difference: I‘I_

Curmrent Perodicity:  Mone

[~ Ore chart per variable Tirme Lines... | Format. .. |
o) x|

Fle Edt Wiew Data Transform Insert Format Analyze Graphs Utities Window Help
claan| ol B | Ok @ & &

«|»| +]=| &I0] 228l
= @ Output :I
B {8 Sequence Piot
.. Tile 500,00
Mates
Active Detaset
L wodel Descrigti
|4 Case Processi
e [ Tplot of Mory

550,00

500,00

ities

450,00

400,00

NorvwFatal

350,00

300,00

250,00

L L L L L O L O I
BEEEmEEEEAEEAEEEEEEEEEEEE eI AA DD

R

T
15
7172737475 76 77 74 79 80 1 &2 43 B4 85 56 &7 53 89 90 91 @2 83 O£ 85 95 97 93 @ O Of

Date =
«| | v|l4] | b

[5PSS Processor is ready | [ 4

The plot shows the existence of a decreasing trend in the time series (first order
non stationarity).

By taking the logarithm of these data, we can stabilize the data variance
(second order non stationarity).
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e C(Click on Graphs..Sequence
¢ Remove Norvw.Fatalities from the Variables list box
e Move LNorw.Fatalities into the Variables list box

i Sequence Charts

& MorewF atalities Variables:
ol YEAR, nat perindic [YE & LNonw Fatalities

o Date. Fomat: "™y

Timne Axiz Labels:

— Tranzform
[ Matural lag transform

[ Difference: I'l_
[T | Seazonaly difference: |1_

Current Periodicity:  Maone

™ One chart per variable Time Lines... | Format... |

4

[,

I

aste

s}

ezet

Cancel

ElE

Help

1.z ODutput1 - SPSS Yiewer ;

Fle Edt Wiew Data Transform Insert Format Analyze Graphs Utities Window Help

=10l x|

clalan| Bl B | Ok @ & &
D E R ESEEN

- {E] Output

B {8 Sequence Piot

) THe 6,40
Nates
Active Detaset
H [ Model Descrigti
. Ll Case Processi
i e[ Toplot of Norw 5,20
B {8 Sequence Piot
-] Thie

Nates

Active Detaset

[ Model Descripti
[ Case Processi
oo [ Taplot of LMoy

6,00

LNorw.Fatalities

580

560

TOT F273 74 7576 77 A0 B0 B &2 81 84 85 B0 47 83 40 90 Of W2 4 M 9598 7 % W
Date

|5PSS Processor is ready

3.4.3.2. Model identification

The model identification consists in determining the three integers p, d, and g in

the ARIMA(p,d,q) process generating the series.

The ACF plot will be used to detect the presence of non stationarity in the data.
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Click on Graphs..Time Series..Autocorrelations

Move the variable LNorw.Fatalities into the Variables list box
Click on the Options pushbutton

Replace 16 with 60 in the Maximum number of lags text box

i Autocorrelations

.

& Mo Fatalities Variables: "
ol YEAR, not periadic [YE & Norw Fataliies

Paste

m Reset

Cancel

ElE

— Tranzform Help
[T Matural log transform

— Dizplay ™ Difference: |1_
W futoconelations I | Seasonaly diference: [I
V¥ Partial autocorelations: Current Periodicin: Mone Dtons..

Autocorrelations: Options 5[
b astimurn Mumber of Lags: IEII Carlis I

Standard Error bethod

% |ndependence model Cancel |
" Bartlett's approsimation Help |

™| Dizplay autoconelations at periodic lags

" Transport
Project co-financed by the European Commission, Directorate-General Transport and Energy

Page 137



Chapter 3

2 Dutput1 - SPSS Yiewer i -1l x|

File Edit Miew Data Transform Insert Format  Analyze Graphs  Utilities  Window Help

EETE NPT
R ERV T

Bl Cutput ,
=--{8] Seuuence Plot LNorw.Fatalities
Title
Motes
Active Dataset [0 Coefficient

........ L& Mods! Descripti s | Upper Confidence
-------- (& Case Processiy ! Limit

........ [l Tsplat of Mory | Lower Confidence
= Limnit

...... I Motes

[ Active Dataset
........ [ Model Descripti

-------- @ Caze Processin |_|H
........ (G Tsplat of Liar Hﬂﬂﬂn
uuu

0,34

ACF

B E' ACF 8l
....., Title
...... ' Notgs 03
5] Active Datazet
........ (& Model Descripti
-------- @ Case Processin
- {E] LMorw Fatalitie
) Title
@ Autocorrel
[l ACF

g Partial Auto

05

.09

TTT T I T T T P T T T T T T T T T T T T I i T i irTd
2345678 9W0NM121312 151617 18192021 22234 252627 282930 31 &2

Lag Number

T
1

1] | 3 I K |

|SPSS Pracessor is ready | |

The ACF plot indicates the presence of non stationarity: this is due to the fact
that the autocorrelations do not decrease at an exponential rate, after a certain
order.

We shall therefore now differenciate the series, by applying the difference filter
F(B) =1- B to the data B being the backshift operator.

e Click on the Dialog Recall button , and then click on Sequence
Charts
e Click on the Difference check box, and verify that 1 is in the Difference

text box.
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i Sequence Charks

[ One chart per vaiiable

& MorawF atalities W ariables: =
ol YEAR, not periodic [YE & LMo Fatalities

gaDate. Fomat "™y E

Paste
Beset

Cancel
Time Axiz Labels:

|

— Tranzform

ElEEEL

[ Matural lag transform

v Difference:
™| Seazonally difference: |1_

Current Periodicity:  Maone

Time Lines... | Format... |

him Dutputl - SPSS Yiewer

Eile Edit Wiew Data Transform Insert Format Analyze  Graphs  Ubiities Window Help

~lolx]

clalala Bl Bl +f k| of & &

«] +]=| &0 3(=(]

B {E] output -]
£ & sequence Pict
[ Tl
oo [ Notes
o [ Ahctive Dates
[ Model Desct
[ Case Proce:
[y Tsplot of o
& Sequence Pit
- Tile
- Hotes
- Active Dates
[ Model Desct
[ Case Proce:
[y Tsplot of LM
2 ack
[ THle

<o [ Active Dates
L& Madel Desci
[ Case Proce:

LNorw.Fatalities

010

020

0,20

0,10

0,00

L[ PACF
B {&] Sequence Plot —4 A, 5 OO O O O 50
o 1918 19 19 1919 19 19 1919 19 13 13 19 139 19 13 19 19 1918 19 19 1919 19 1919 |9 W WA X
+[E Ttle TI T2 73 T4 75 TH 77 TA 79 A0 A1 A2 A3 B4 85 D5 A7 43 &3 90 G1 92 33 94 95 99 O7 83 9 00 01 @2 @3 J
e Date
o [ Mctive Date: =
4 | » 1| | »
[5PSS Processor is ready [ [ S

The ACF plot of the filtered series will be used once again, to detect the
presence of nonstationarity in this filtered dataset.

e Click on Graphs..Time Series..Autocorrelations
¢ Move the variable LNorw.Fatalities into the Variables list box
e Click on the Difference check box, and verify that 1 is in the Difference

text box.

e Click on the Options pushbutton
e Replace 16 with 60 in the Maximum number of lags text box
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i Autocorrelations

f MarvwF atalities Wariables:
Sl YEAR. not perindic [vE

ﬁ LMo Fatalities

— Tranzform
[T Matural log transform

v Difference:

]9
Pazte
Reset
Cancel

Help

i,

— Display
¥ futocomelations ™| Seazonally difference: |1
7 i i Current Periodicity:  Mone .
¥ Partial autocomelations Wl
Autocorrelations: Options 5[
b astimurn Mumber of Lags: IBEI Carlis I
Standard Error M ethod
Cancel |
¥ |ndependence model
" Bartlett's approwimation Help |
izplay autocorelations at penodic |50
I Display aut El t periadic|
i Dutput1 - SPSS Viewer =10l x|
Eile Edit Wiew Data Transform Insert Format Analyze  Graphs  Ubiities Window Help
clalaE| Bl B o D] of & (|
o] +]=] aic] =l=)al]
© [ Active Datar & =]
- L Model Descr
[ Case Proce:
o (] Tsplot of LM LNorw.Fatalities
& acr
Ttle
hotes [ Coefiicient
: Active Date: o | Upper Confidence
*-- g Model Desct ' Limit
- L} CaseProce: | Lower Confidence
= {E] LNorw Fata el Limnit
o [E] Thtle '
L& Autocor
o) ACF i
b L Partial & '
L[ PACF
B {8 Seauence Pt 5 g D 0_O=l1 i B0 H m
i O [ o IT o o
39
[y Tsplot of LM 06
-8 AcF '
+[= Tle
2 05 J
g Case Froce | 3 34§ 87 88 9101230 15 1E 17 019 21 2220 24 20 3 20 30
=] LMore Fata
C@e e Lag Number ~
« i Ll_l 4 | Ll_l
|5PSS Processor is ready [ | A

The ACF plot of the filtered series does not indicate the presence of remaining

non stationarity.

We shall therefore accept the hypothesis that this filtered series is stationary,
which enables to retain d=1 for the value of the integer d.

Second, the choice of p=0 and g=1 is made by examining the ACF and the

PACF plots taken together:

model.

we choose to fit the data with an ARIMA(0,1,1)
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&Lu_

3.4.3.3. Model estimation and validation

box.

Click on Analyze..Time Series..Create Models
Move the variable LNorw.Fatalities into the Dependent Variable(s) list

From the Method box, select ARIMA modelling method
Click on Criteria then enter values for the three integers p,d,q.
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i Time Series Modeler x|

Wariables | statistics | Plots | Output Filter | Save | Options |

‘ariables: Dependent Yariables:

ymorvwFatalities [MarvwFatalitieas] yLNDrw.Fatalities [Lrarw. Fatalities]
JHYEAR, nat periodic [YEAR_]

Independent Yariables:

Methaod: F'.F!.II'-'IF'. 'I Criteria. .. |

Model Type: ARIMALD, O, O)

Estimation Period Forecast Period
Start:  First case Stark:  First case after end of estimation period
End:  Lask case End:  Last case in active dataset

OK I Paste | Reset | Annuler | Hide |
Time Series Modeler: ARIMA Criteria |

Madel I outliers |

—ARIMA Orders

Struckure:
Honseasonal Seasonal
Autoregressive (B Jul u]
Difference (d) 1 1]
Maving Average (q) 1 0

Current periodicity:  Mone

—Dependent Yariable Transformation
= Mone
" Sguare rook

" Matural log

¥ Include constant in model

Conkinus I annuler | fide |

e C(Click on Statistics then check parameter estimates in the Statistics for
Individual Models list.
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i Time Series Modeler x|

VYariables —Statistics IPIots I Output Filker I Save | Opkions |

[V Display fit measures, Ljung-Box statiskic, and nurmber of outliers by model

Fit Measures

[V Stationary R square [~ Mean absalute error
| B square I~ Maimum absalute percentage error
[ Root mean SguUare error o Magimurn absolute error
[~ Mean absolute percentage error [~ Mormalized BIC
Statistics for Cormparing Models —————————————  —35tatiskics for Individual Models

V' Goodness of fit

[ Residual autocorrelation Function (ACF) ™ Residual autocorrelation function (ACF)

[ Residual partial autocorrelation Function {PACF) [ Residual partial autocorrelation Function (PACF)

I Display forecasts

oK I Paste | Reset | Annuler | Aide |

e C(lick on Plots and check Observed Values, Fit values, Residual
autocorrelation function (ACF) in Plots for Individual Models.
x|
VariableslStatistics Plats |Out|:|ut FiIterISave |0pti0ns|

—Plots For Comparing Madels

[ Stationary R square [~ Maimum absolute percentage error

[ R square [~ Maximum absolute error

[ Rook mean sguare error u Morrmalized BIC

[ Mean absolute percentage error [ Residual autocorrelation Function (ACF)

[ Mean absolute error [ Residual partial autocorrelation Function (PACF)

r—Plats for Individual Models

vV Series [V Residual autacorrelation Funckion (ACF)
Each Plot Displays

v ohbserved values

™ Residual partial autocorrelation Function (PACF)

|- Forecasts
¥ Fit values
[~ Confidence intervals for Forecasts

™ Confidence intervals for fit values

oK I Paste | Reset | Annuler | Aide |

e (Click on Save and check Noise Residuals then Click on OK.
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i Time Series Modeler x|
variables | Statistics | Plots | output Fiter  Save | optins |

—Save Yariables

Variables:
Description Save Variable Hame Prefix
Predicted Values O Pradictzd
Lower Confidence Limits O Lol
Upper Confidence Limits O 1cL
Moize Residusls v MReszidual

For each item you select, one variable is saved per dependent variable.

—Export Model File

File: Browse, .. |

oK I Paste Reset Annuler Aide

Model Description ARIMA(0,1,1)

The results obtained after the estimation procedure (maximum likelihood) are
presented and commented below.

Model Fit

i& Dutputl - SPSS Yiewer _ Inlﬂ

File Edit Wiew Data Transform Insert Format  Analvze Graphs  Utilities
Wwindosw  Help

2ldaa| B @ o Ok I & &
|| +|=| &l0] =28

Title - ]
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[ ACF
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b [ PACF Stationary R-sguared JB7
Sequence Plot R-squared 7849
] Title — RMSE 099
g tes MAPE 1,362
" petve atas.i. MaxAPE 3,915
: ndel Descrigtion
@ Caze Processing Sumimi &S .08
(] Tspict of Liorw Fataltie MaAE 230 |
Sequence Plot Mormalized BIC 4,413

[ Title hd hd
1 B 1| | v

|SPSS Processar is ready 2
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Due to the presence of the trend, the stationary R-squared is only 16,7% (the
model explains 16,7% of the variance of the filtered data, compared to a
regression model), and much smaller than the R-square which is 78,9% (the
model explains 78,9% of the variance of the initial data).

As for the different measures of the error made:

the mean absolute percentage error (MAPE) is 1,36% %, its highest value
observed being 3,915%,

the mean absolute error (MAPE) is 0,08, its highest value observed being 0,23,
the root mean square error (RMSE) is 0,099, and is a little higher than if it were
computed as an arithmetic mean (0,08),

At last, the normalized BIC, which is -4,413, is a goodness of fit measure that
takes account of the parsimony of the model. Note that, as it is the case for the
R-squared, its interest lies in comparisons between several nested models, and
not in its absolute value.

it Dutput1 - SPSS ¥i

Fle Edt Wiew Data TIransform Insert Format Analyze Graphs Utities Window Help

=101 x|

clalan| Bl @ | Bk @ & &
DR E R ESEEN

[ e -
i g Sutocorrelations Model Statistics
o ) ACF
| Lig Partisl Autacorrelatic Waodel Fit
b [ PACF statistics Ljung-Box @(18)
Sequence Plot MNurnber of Stationary MNurnber of
ng Muuel Prediciors R-squared Statistics DF Sig. Qutliers
MNotes LMo Fatalities-Model _1 a JBT 16,188 17 Eanl 0
Active Dataset
L5 Model Description
@ Caze Processing Summe=
(] Tsplot of Lorw Fatalitie

ARIMA Model Parameters

[ Title Estimate SE t Sig.

) Mates LMorw Fatalities-Model_1  LMorw.Fatalties Mo Transfarmation  Constant =020 10 -1.9689
Active Dataset Difference 1
L& Mackel Description M Lag 1 432 64 2,636

058

013

il

L5 Case Processing Summ:
(31 Tsmlat of LMorw F?aﬁﬂ
< »

K1} |

5PS3 Processor is ready [ [

o

Model Statistics

The Ljung-Box statistic provides an indication of whether the model is correctly
specified, in the sense it allows testing the global nullity of the autocorrelation of
the residuals (of each autocorrelation, of order 1 up to order 18).

In our case, this hypothesis is accepted, because the 0,510 value of the Ljung-
Box statistic is more than 0.05.

ARIMA Model Parameters

The ARIMA model parameters table provides estimates of the model
parameters and associated significance values (at the usual 95% confidence
level). A t-value higher than 1,96 indicates that the hypothesis of nullity of the
parameter has to be rejected, and that the parameter can thus be considered as
significantly different from 0.

In this case, the hypothesis of nullity is rejected in both cases, and the two
parameters of the ARIMA models are to be considered as different from zero.
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In addition to the preceding Ljung-Box test, of global nonautocorrelation of the
residuals (correct specification of the model), the hypothesis that each
autocorrelation of the residuals is zero can be tested using the above ACF plot.
The computation of confidence regions enable to determine visually whether it
is the case (at the usual 95% confidence level). It is the case indeed for this
example.
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3.4.3.4. Graphical results and additional test

Graphical outputs
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The preceding plot describes the development of the observed and fitted series.
Note that, due to the use of the filtered state used for computing the fitted
values, the fitted data appear to stay one step behind the observed data.

Second, the plot of the estimated residuals - the difference between the
observed and the fitted data plotted first - is to be considered:

e Click on Graphs..Sequence

e Remove LNorw.Fatalities from the variables list box
e Move Noise residual into the variables list box

[ ]
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Note that it is very difficult, on this example, to determine visually whether the
residuals are a white noise or not.

In addition to the nonautocorrelation hypothesis, the Gaussian hypothesis has
to be validated too, which then enables to consider the residuals as an
independent series - or white noise.

Nevertheless, note that the Gaussian hypothesis is not necessary, and that the
residuals can be a white noise even if this condition is not fulfilled. The
hypothesis of independence is then to be tested directly, which will not be the
case in this manual.

Normality test

We shall now give the histogram of the residuals (which gives a general idea of
whether the residuals are Gaussian), the QQ-plot (which is a graphical test of
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this hypothesis), and at last the result of the Kolmogorov-Smirnov test (which is

a non-parametric test of this hypothesis).

Histogram

e Click on Graphs..Histogram...
e Move the variable NResidual LNorv_Model 1 into the Variable list box.
e Check Display normal curve, then click on OK
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In the case the Residuals have a normal distribution, the histogram looks
approximately like the normal curve, and the difference area between the two

graphs is minimal.

QQ-plot

e Click on Graphs..QQ..
e Move the variable NResidual LNorv_Model 1 into the Variables list box.

e (Choose Normal from Test Distribution, then click on OK.
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The normal Q-Q plot compares the distribution of a given variable to the normal
distribution (represented by a straight line). The straight line represents what the
residuals would look like if they were perfectly normally distributed. The
residuals are represented by the circles plotted along this line. The closest the
circles are to the line, the best the normality hypothesis is fulfilled.

Kolmogorov-Smirnov Test

e Click on Analyze..Non parametric Tests..1-Sample K-S...
e Move the variable NResidual _LNorv_1 into the Test Variable List box
e Check Normal in Test Distribution list, then click on OK.
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In the case the Kolmogorov-Smirnov test is significant, the normal distribution of

the residuals hypothesis is to be rejected.
In our case, this hypothesis is accepted, because the 0,713 value of the
Asymp. Sig. (2-tailed) is more than 0.05 (at the usual 95% confidence level).
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3.4.4 ARIMA models for seasonal series (UK-KSI Drivers)

The dataset presented in this section is the monthly number of drivers killed and
seriously injured in the United Kingdom (UK-KSI), for the period January 1969 -
December 1984 (as described in Harvey and Durbin, 1986). A pure ARIMA
model will first be fitted on these data, and an intervention variable and two
explanatory variables will be introduced in the model in the two following steps
(see the Methodology Report).

3.4.4.1. Data description

1. Start of analysis and data load

» Use the menu <File, Open, Data ...> to open the file ‘UK_KSlI.sav’.

&2 *UK_KSI [DataSet1] - SPSS Data Editor
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The data file consists of the following variables:

DRIVERS: The number of drivers killed or seriously injured.

Interv: The intervention variable

TRKM: The car traffic index

PPRICE: The petrol price.

The log transformed variables of the preceding ones, to the exception of the
intervention variable, are included in the data file, and three additional variables
YEAR MONTH and DATE (see the Variable View, in which all variables are
described).

2. Graphical diagnostics
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e C(Click on Graphs..Sequence
 Move DRIVERS into the Variables list box
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e C(Click on Graphs..Sequence
« Remove DRIVERS from the Variables list box
« Move DRIVERS into the Variables list box
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i Sequence Charks
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3.4.4.2. Model identificatio

The model identification consists in determining the six integers p, d, g (related
to the non seasonal part of the model), and P,D,Q (related to the seasonal part

n

of the model) in the multiplicative ARIMA(p,d,q)(P,D,Q)s formulation.

As already mentioned before, the ACF plot will be used to detect non

stationarity in the data.

e Click on Graphs..Time Series..Autocorrelations
e Move the variable LDRIVERS into the Variables list box
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e Click on the Options pushbutton
e Replace 16 with 60 in the Maximum number of lags text box
e Click on Continue, and then click on OK to get a plot of the ACF plot
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The ACF plot indicates obvious non stationarity, here again this is due to the
fact that the autocorrelations do not decrease at an exponential rate, after a

certain order.

We shall differenciate the series, by applying the “seasonal” difference filter
F(B) =1-B'* to the data, B being the backshift operator.

e C(Click on the Dialog Recall button
Charts

m

, and then click on Sequence

e Click on the Seasonally difference check box, and verify that 1 is in the

Seasonally difference text box.

x
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No indication of remaining non stationnarity in the seasonally filtered data can
be found in the next-coming ACF plot.
We shall therefore accept the hypothesis that this filtered series is stationary,
which enables to retain d=0 for the non seasonal part of the general filter and
D=1 for its seasonal part (see the Methodology Report)..

Second, the ACF and the PACF plots, taken together, lead to choose p=2 , g=0
for the non seasonal part of the model, and P=0, Q=1 for the seasonal part of
the model, indicating that the model is an ARIMA(2,0,0)(0,1,1);2.

7 Transport

Project co-financed hy the European Commission, Directorate-General Transport and Energy

Page 159




Chapter 3

2 Output1 - SPSS Yiewer E oy [ 9

Elle Edit Vew Data TIransform Insert Format Analyze Graphs  Utilities Window Help

clBIBIE| | B o Bl 2] & #|
l3] +|=] 20| =l=la] _

L Madel Description

@ Caze Processing Sun
-[[i1] Tsplot of LORIVERS LDRIVERS

[E] acF

] Coefficient

lates

Active Dataset 03 | Upper Confidence

- Wodlel Description Limit

@ Case Processing Sun

b--{&] LORMERS 06

& Title

& sutocorrelstions
ACF 039

-Lig Partial Autocorrel

e RN e —
Esaqu:;cemm | ulul 1] L”L”l-‘ LHJJIJ“]HJ' '-l-|‘|_U|uLI.u_MJ

active Dataset 39
- L Modlel Description
[ Case Processing Sun
[ Tsplot of LORIVERS

[E] acF

| Lower Confidence
Limit

ACF

05+

09

_ @MDdE\DESEriphDH TITTTTTITTITTIIoaTT TITTTTITTRTT I RT TR T T T TTaT T

LLLRRLI T
123456789111111111122222223222333333333344444444445555555
L& Case Processing Sun| 01234567890123 FH

T T
1 3 556
789 4567890123456789012345674890123. EEL
b--{&] LORIVERS Lag Number
[ Title

[ Autocorrelstions = -
il B < | 3

PSS Processor is ready l | I Z

i Dutput1 - SPSS Yiewer K o =] |

Fle Edt Yiew Data Transform Insert Format Analyes Graphs Ubiities Window Help
@i Bl Bl of Bk @ 2 &
«l2 +I=] &l0 zl=l2]]

Active Dataset - B
- Wodlel Description
[ Case Processing Sun
[ Tsplot of LORIVERS
[ acr LDRIVERS
[ T
lotes
Active Datasst ] Coefficient
- [ Model Description 094 | Upper Confidence
L{ Case Processing Sun ! Limit
b {E] LORIVERS L Lower Confidence
=) Title 08 Limit
(5 Autocarrelations
(o) &cF
L& Partisl utocorrel 03 "

[ PACF
- Lﬂw i

E] Secusncs Piot

Partial ACF

I

L Model Description ]
@ Casze Processing Sun
-[[i1] Tsplot of LORIVERS
[E] ncF 25

Active Dataset 08
- Wodlel Description
- Case Processing Sun— T T T T T T T T T T I T T T T T T T T T oo

12345678911 11111111222222222 233933313334 844 44444 45555555 5556
b {E] LORIVERS 0121456789012345678901234587890123456 7890123456 7830
5 Title

=] Lag Number
‘LA Autocorrelstions ¥ g -
4 B 4| | »

[5PS5 Processor is ready I [ 4

3.4.4.3. Model estimation and validation

Click on Analyze..Time Series..Create Models

Move the variable LDRIVERS into the Dependent Variable(s) list box.
Choose ARIMA in the Method list.

Click on Criteria then specify the ARIMA model



3.4 ARMA-type models

‘ariables:

i Time Series Modeler

variables |Statistics | Plots | output Fiter | Save | options |

Dependent Yariables:

& DRIVERS [DRIVERS]
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& PPRICE [PPRICE]

&7 LTRKM [LTREM]

&7 LPPRICE [LPPRICE]

Ll vEAR, nat perindic [YEAR_]
S MONTH, period 12 [MONTH_]

x|
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Estimation Period

Forecast Period
Start:  First case Stark:  First case after end of estimation period
End:  Lask case End:  Lask case in active dataset
o I Paste | Reset | Annuler | Aide |
—_—
Time Series Modeler: ARIMA Criteria x|
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— ARIMA Orders
Skructure:
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Difference (d) 1] 1
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for Individual Models list.

Click on Statistics tab then check parameter estimates in the Statistics
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: Time Series Modeler |

Yariables ~Statistics |Plots | output Fiter | save | options |
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o Click on Save and check Noise Residuals then Click on OK.
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: Time Series Modeler x|
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—Save Variables
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—Export Model File

File:: Browse. .. |

QK I Paste Reset Annuler Bide

In the output window of SPSS, we find the statistics for the chosen model as
follows:
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Project co-financed hy the European Commission, Directorate-General Transport and Energy

Page 163



Chapter 3

Model Description ARIMA (2,0,0)(0,1,1)

The results obtained after the estimation procedure (maximum likelihood) are
presented and commented below.

Model Fit
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The stationary R-squared is only 53,0% ( the model explains 53,0% of the
variance of the filtered data, compared to a regression model), and much
smaller than the R-square which is 77,3% (the model explains 77,3% of the
variance of the initial data).

As for the different measures of the error made:

The mean absolute percentage error (MAPE) is 0,902% %, its highest value
observed being 3,841%,

the mean absolute error (MAE) is 0,067, its highest value observed being
0,267,

the root mean square error (RMSE) is 0,084, and is a little higher than if it were
computed as an arithmetic mean (0,067),

At last, the normalised BIC, which is -4,4850, is a goodness of fit measure that
takes account of the parsimony of the model. Note that, as it is the case for the
R-squared, its interest lies in comparisons between several models, and not in
its absolute value.
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Model Statistics

In this case, this hypothesis of correct specification (global nullity of the
autocorrelation of the residuals is accepted, as the 0,17 value of the Ljung-Box
Statistic is more than 0.05.

ARIMA Model Parameters

In this case, the hypothesis of nullity of each of the four parameters is rejected,
and all parameters of the ARIMA model are to be considered as different from
zero.
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The residual ACF plot indicates that no very significant autocorrelation remains,
up to order 24.
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3.4.4.4. Graphical results and additional test

Graphical outputs
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As in the preceding case, the first plot describes the development of the
observed and fitted series, and the second plot the development of their
difference (the estimated residuals)

Note that the fitted data do not appear to stay one step behind the observed
data, as it was the case for the Norwegian fatalities model. The strong seasonal
pattern is reproduced, which takes over the adjustment of the trend.
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Normality test

Histogram
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Kolmogorov-Smirnov Test
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In this case, this hypothesis of normality of the residuals is accepted, because
the 0,66 value of the Asymp. Sig. (2-tailed) is more than 0.05 (at the usual 95%
confidence level).

3.4.4.5. Intervention variable

In this section, we will add an intervention variable to the model, in view of
performing a so-called intervention analysis.

Data description

The reason for the introduction of the intervention variable is the introduction of
the seat belt law in February 1983. The variable will therefore be equal to 1,
February 1983 onwards, and equal to 0 before (see the Methodology Report).

Model estimation and validation

e Click on Analyze..Time Series..Create Models

e Move the variable LDRIVERS into the Dependent Variables list box and
the variable interv in the Independent variables list box.

e Choose ARIMA in the Method list, click on Criteria and then specify the
model you want to estimate.
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Variables:

&” DRIVERS [DRIVERS]

& TREM [TREM]

& PPRICE [PPRICE]
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X

(0]:4 |

Paste | Reset | annuler | Aide

The Transfer Function tab (only present if independent variables are specified)
will now be used to define the call to the intervention variable.

The Transfer Function tab allows defining transfer functions for the
independent variables specified on the Variables tab. In this case, the
intervention variable is the only independent variable, and the indication to be
given is that a seasonal difference filter is used for that variable (see the

Methodology Report).
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Independent Yariables:

Time Series Modeler: ARIMA Criteria

Model  Transfer Function |Outliers |

— Transfer Function Crders

ﬁinterv [inkery] Skruckure:
Honseasonal Seasonal
Mumerator 0 u]
Denominator 0 u]
Difference 0 1
Current periodicity: 12
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— Transformation
¥ Mone
o Sguare rook
™ Matural log
Zonkinue I annuler Aide

Here are the SPSS results for the specified model:
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Model Description ARIMA(2,0,0)(0,1,1) with intervention variable
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The addition of the intervention to the model has improved the goodness-of-fit:
the Stationary R-squared has increased (from 0,53 to 0,563).

The R-squared has increased (from 0,773 to 0,788)

the MAPE has decreased (from 3,841 to 2,835).

the Normalized BIC has decreased (from -4,590 to -4,886).
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Model Statistics

Note that, in this case, the Ljung-Box statistic value of 0,043 is smaller then
0,05, which indicates that the hypothesis of global nullity of the autocorrelation

™ Transport
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of the residuals, up to order 18, has to be rejected, at the usual 95% confidence
level.

ARIMA Model Parameters

In this case, the hypothesis of nullity of all parameters is rejected: all four
parameters related to the dynamics are to be considered as different from zero
and the intervention parameter too.

The following ACF plot of the residuals indicate that the autocorrelation of order
5, and of order 18, for instance, differ significantly from zero, at this usual
confidence level
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Graphical results and additional test

The two usual graphical outputs are given below, followed by the normality test
results.
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Histogram
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Kolmogorov-Smirnov Test
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In this case, this hypothesis of normality of the residuals is accepted, because
the 0,554 value of the Asymp. Sig. (2-tailed) is more than 0.05 (at the usual
95% confidence level).

3.4.4.6. Intervention and explanatory variables
In this section, we will add two explanatory variables, LTRKM, LPPRICE, as

defined above in the database. The seat belt law intervention variable from the
previous section will be kept in the model.

Model estimation and validation

e Click on Analyze..Time Series..Create Models

e Move the variable LDRIVERS into the Dependent Variables list box and
the variables interv, LTKRM and LPPRICE in the Independent variables
list box.

{7 Transport
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As the intervention variable is the only independent variable, the indication to be
given is that a seasonal difference filter is performed on that variable (see the
Methodology Report).
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Time Series Modeler: ARIMA Criteria x|

Maodel  Transfer Function |Out|iers |

Independent Yariables: — Transfer Function Crders
Skruckure:
ﬁLTRKM [LTREM] Honseasonal Sea=onal
ﬁLPPRICE [LPPRICE] M ETEweT 0 0
Denominator 0 o
Difference 0 1

Current periodicity: 12

Delay: I 0

— Transformation

i MNone
- Sguare rook

" Matural log

Continue I annuler | Hide

Model Description ARIMA(2,0,0)(0,1,1) with explanatory variable
Model Fit

" Transport
Project co-financed by the European Commission, Directorate-General Transport and Energy

Page 177



Chapter 3

L Dutputl - SPSS Yiewer

Insert Format Analyze Graphs  Utilities

Eile Edit

Wiew Data Transform

Window Help

=10l x|

clREE| B E o 0=k 9 & %

€] #=] &0 == 8]

4

o

-8

{E] Pt

Sequence Plot &
Title

Potes

Active Data
L& Model Desci
L& case Proce:
(] Tsnlat of Mo
Graph

Title

[ hotes

Active Date—
[ﬁﬁ Histogram o

ol

4]

4 jtems selected (1 hidden/collapsed)

Fit Statistic Mean
Stationary R-squared 590
R-zquared a0z
RMSE ara
MAFE BED
MaxAFPE 2,336
MAE 0eE4
MaxAE 7T
Mormalized BIC -4,881 —
| of
|5PS5 Processor is ready o

The addition of the two explanatory variables to the model has still improved the
goodness-of-fit:
The Stationary R-squared has increased to 0,59.
The R-squared has increased to 0,802

The MAPE has decreased to 0,86 %.

The only exception is that the Normalized BIC has increased a little, from -4,886

fo -4,881, but remains smaller than in the pure ARIMA model (64,841).
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Model Statistics

The hypothesis of global nullity of the autocorrelation of the residuals is still
accepted, as the statistic is 0,078, and higher than 0,05 (at the 95% confidence
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level).
ARIMA Model Parameters

In this case, the hypothesis of nullity of the model parameters is rejected (at the
95% confidence level), except for the log of the traffic index variable parameter:
all parameters related to the dynamics are to be considered as different from
zero, the petrol price parameter and the intervention parameter too.

Note that, in case the confidence level is lowered to 70% for instance (t-value
between 1 and 2), the parameter related to the traffic index variable would also
be considered as different from zero too.
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Graphical results and additional test

The two usual graphical outputs are still given below, followed by the normality
test results.
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Kolmogorov-Smirnov Test
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In this case, this hypothesis of normality of the residuals is accepted, because
the 0,761 value of the Asymp. Sig. (2-tailed) is more than 0.05 (at the usual
95% confidence level).
Note that the statistic value has kept on increasing, and has the highest value in
this very last case.
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3.4.5 Conclusion ARMA-type models

In this manual, the general approach for performing an ARMA-type analysis
was given and demonstrated on several examples of ARMA-type models.

A pure ARIMA model was estimated on non stationary annual data (section
3.4.3.) and ARIMA models including additional variables (intervention and
explanatory) were estimated on non stationary monthly data (sections 3.4.4).

In the case a pure ARIMA model was estimated, for descriptive or forecasting
purposes, without any call to additional variables), the first relevant task
consists in pretransforming the initial dataset in order to obtain another
stationary data set. The second relevant task consists in identifying a
parsimonious ARMA model on this second data set, and to test whether the
main hypothesis related to the residuals of the model (non correlation, and
normality) are valid.

In the case ARIMA models including additional variables were estimated, for
descriptive and explanatory purposes, the global model was fitted directly, and
all parameters - whether related to the dynamics or to the exogenous effects —
estimated altogether.

The main hypotheses related to the residuals were tested in the same manner
as in the preceding case.

Apart of the added value due to the exogenous variables - in terms of
interpretation of the exogenous estimated parameters - , this modelling in
successive stages described in this manual, highlighted a general increase of
the model fit, which was observed at each stage (see the Methodology Report
for more results about parameters interpretation and gain in the model fit).

Project co-financed hy the European Commission, Directorate-General Transport and_ine_r_g'v
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3.5 DRAG models

The DRAG model is an important theoretical contribution to road safety analysis
and has for the sake of completeness been described in the methodology
report. In this manual, however, there is no section dedicated to DRAG-models
in this manual, because they require large amounts of data which, in practice,
are seldom available in road safety research. This manual is written as part of
the SafetyNet project. The databases this project produces are not meant to be
exhaustive enough for such a purpose. Moreover, the software retained for
performing time series analysis within the project do not allow for estimation of a
DRAG-model ( note that a software: the TRIO program, is dedicated to
estimating DRAG models).



3.6 State space models

Chris de Blois (SWOYV)

3.6.1 Introduction

The objective of this manual for state space analysis is 1) to demonstrate the
opportunities that state space modelling offers to road safety analysis, 2) to
instruct the reader in setting up a state space model, and 3) to instruct the
reader how to interpret the model results. The reader does not need to be an
expert in statistics, modelling, or programming.

This state space analysis manual is closely related to Section 3.6 of the
Methodology report, which deals with the theory behind state space modelling.
This manual section demonstrates how the analyses discussed in Section 3.6 of
the Methodology report are 2performed with a software package for state space
analysis called STAMP 6.0°. Therefore, the datasets used in this manual are
the same as the datasets which are considered in Section 3.6. In addition to the
theoretical sections, this manual also describes the general approach
recommended for state space analysis of time series. This approach is
illustrated using the dataset representing the monthly number of drivers killed or
seriously injured (KSI) for the years 1969-1984 in the UK, which is one of the
datasets employed in the Methodology report.

STAMP 6.0, a software package dedicated to state space modelling, is powerful
and easy to use, and is therefore also used for the state space analyses in this
manual. STAMP 6.0 has independently been reviewed by several authors:
Teyssiere (2005), Hallahan (2003), Judge and Ninomiya (2000), and Yaffee
(2003).

Section 3.6.2 first describes in detail how to set up a deterministic level model in
STAMP 6.0 and how to interpret the results. Then, the stochastic level model is
described less extensively and the results of the analysis are compared with the
results of the analysis with the deterministic model. Section 3.6.3 deals with the
local linear trend model. The deterministic variant of this model, the
deterministic level and deterministic slope model, corresponds to a classical
linear regression. So, if this model is applied to the same dataset as used in the
classical linear regression manual (Section 3.2), then the results should
correspond to the results presented in that manual. Section 3.6.4 introduces an
additional component: the seasonal. In Section 3.6.5 and Section 3.6.6 another
two components are added: intervention variables and explanatory variables,
respectively. Sections 3.6.4 through 3.6.6 demonstrate the recommended
approach to state space analysis of time series. Finally, Section 3.6.7 contains

2System requirements for STAMP 6.0 are: Windows XP/2000/NT/98/95. STAMP 6.0 is available
from Timberlake Consultants Ltd, Ujit 3, Broomsleigh Business Park, Worsley Bridge Road,
London SE26 5BN, United Kingdom. Telephone +44 (0)20 86973377, Fax +44 (0)20 86973388.
E-mail: info@timberlake.co.uk. Website: www.timberlake.co.uk. The main website for STAMP
is: www.STAMP-software.com.
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a summary of results and some general recommendations for the analysis of
road safety data with state space techniques.

The analysis of each model is subdivided into the following steps:
Start of analysis and data load;

Model formulation;

Model estimation and inspection of results;

Graphics of model components;

Test of model residuals;

Test of auxiliary residuals;

Conclusion of analysis;

Forecasting (optional);

Exercise (optional).

CoNOO AWM~

Forecasting is discussed for some of the models. Forecasts can be made only if
the model performs well and the residuals satisfy the model assumptions. The
additional exercise for the reader is optional as well.

The following conventions concerning notation are used throughout Section 3.6:
The basic explanations are in standard print,

= Instructions are preceded by a bullet point,

The model output is printed in Courier, 10 pnt,

More elaborate explanatory texts, which can be skipped without missing essential information,
are printed in italics,

<Menu selections are placed between triangular brackets>.
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3.6.2 Local level model

This section first presents an extensive step-by-step description of the analysis
of the Norwegian fatalities time series using the deterministic level model in
STAMP. The analysis includes trend description, residual testing, and outlier
testing. Then, the analysis with the stochastic level model, or local level model,
is described more succinctly. The latter analysis also includes forecasting over
seven years.

3.6.2.1. Deterministic level model

The above mentioned steps will now be taken one-by-one for the deterministic
level model.

Step 1: Start of analysis and data load

First, we open GiveWin, load the data, and start STAMP.

= Start the GiveWin2 program.

» Use the menu <File, Open Data File...> to open the file
“‘NorwayFatalities.in7”.

The data file is loaded and displayed in a minimized window at the bottom of the
GiveWin main window. To view the data file:
= Click on the icon with the two overlapping boxes:
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|E| GiveWin - MorwayFatalities * -0 x|
File Edit %ew Tools Modules Window Help

N H &) 2B @ | mEEEAL &
[ 2 (T T T G 0 T S
EF T
=3 Data Files MorwayFatalities.in7 loaded from %\Hera‘Users\blois'Mijn D%
-# MorwayF atalit
771 Graphics Files
ETextFiIes
] R e
(%] Modules —
0 fatalities Log NO fat =
1970- 1 560, A. 32794
1971- 1 533. 6.27852
1972- 1 490, G.19441
1973 1 511. f.234637
1974 1 509. f.23245
1975- 1 539, f. 28972 2
1] 3
1976- 1 471. 6.15486 A
1977- 1 442, 6.09131
1978- 1 434, 6.07304
1876 1 437 A N7993
a| |
D N

|N0rwayFataIities.in? |Stam|3 | i

This data file consists of two variables: the annual number of people killed in
road traffic in Norway (see Sections 1.2.2 and 3.6.1 of the Methodology report)
for the years 1970 through 2003 (“NO_fatalities”) and the logarithm of the latter
time series (“Log_NO_fat”).

= Minimize the data file window again and use the menu <Modules, Start
Stamp> to start the STAMP program. The STAMP window appears:

=

File Data Model Test Help

P E =

The 5TAMP package for Giveladin

For Help, press F1 I_ v

Step 2: Model Formulation

In this step, we define the deterministic level model:
= Inthe STAMP window choose the menu <Model, Formulate...>.
» Inthe Data selection window select the variable Log_NO_fat.
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Data selection x|

Delete b odel D atabase

|NEI fatalities << Add |
Hew Madel

i

~ Statug—— LCancel |
[Elear
A ﬂl
Har
Change Database
Deselect | Eezall.. | INDrwayFataIities.irj

= (Click the Add button.

x
Delete | b odel Datal_:uase”
Y Log_MO_fat MO_fatalities
Mew Model | Log_MO_fat
— Status Cancel |
[Elear
Yoyar Help |
Hewar
Change D atabaze
[eselect | Becal.. | INDrwa_l,lFataIities.irj

= Then click OK.
* In the Select components window, choose a Fixed Level, No slope,
Irregular, and No seasonal:

" Transport
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Select components x|

—Lewel——— Slope
i Stochastic " Stochastic ¥ lnegular
o Fixed [ Fixed .
[T Autcregression
= Mo level
— Seazonal
" Dummy Cycle:  tho period
" Trigonometric i ID-S |5
- I~ 2|09 f12
% Mo seazonal 2|9 |20

Restart Mewt x> | Finizh I Cancel | Help

=  Then click on the Finish button.

Step 3: Model estimation and inspection of results

The third step is to estimate the model and inspect the results.
= |n the Estimate Model window, select Maximum Likelihood:

Estimate Model

b aximum likelihood
M aximum likelihood [control]
Edit/Restrict parameter values

(]
Cancel
Help

Optionz...

et

Selection zample 1370 1 to 2003 1

E ztimation gample I'IEI?EI 3: to (2003 =
Less forecasts IEI 3: T=24

!

= Click OK.

The model is estimated, and the following output appears in the GiveWin
Results window:

———— STAMP 6.30 session started at 13:05:05 on Monday 20 February 2006

Please cite STAMP as:
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Koopman S.J., Harvey, A.C., Doornik, J.A. and Shephard, N. (2000).
Stamp: Structural Time Series Analyser, Modeller and Predictor,
London: Timberlake Consultants Press.

Method of estimation is Maximum likelihood
The present sample is: 1970 to 2003
Equation 1.

Log_NO_fat = Level + Irregular

Estimation report

Model with 1 parameters ( 1 restrictions).

Parameter estimation sample is 1970. 1 - 2003. 1. (T = 34) .
Log-likelihood kernel is O.

No estimation done.

Eg 1 : Diagnostic summary report.

Estimation sample is 1970. 1 - 2003. 1. (T = 34, n = 33).
Log-Likelihood is 48.1408 (-2 LogL = -96.2816).

Prediction error variance is 0.047433

Summary statistics

Log_NO_fat
Std.Error 0.21779
Normality 1.3457
H( 11) 3.6612
r( 1) 0.58763
r( 6) -0.073609
DW 0.22639
Q( 6, 6) 28.814
R"2 0.00000
Eg 1 : Estimated variances of disturbances.
Component Log_NO_fat (g-ratio)
Irr 0.048583 ( 1.0000)

= In the first part of the output (estimation report and above), check the output
on the estimation method (maximum likelihood), sample period (1970-2003),
model components (level and irregular), the number of parameters
estimated (1), and the number of observations (T=34).

The diagnostic summary report gives some additional information: number of degrees of
freedom (T-1), log-likelihood, and prediction error variance. The log-likelihood value given is the
log-likelihood function at its maximum value after estimation. This value is different from the
value in Section 3.6.1.4 of the Methodology report, which is obtained from the above value by
extracting a constant and dividing by another constant. Both constants depend on the number of
observations T. The prediction error variance (PEV) is a basic measure of goodness-of-fit (the
smaller the PEV, the better the fit).

Next, the summary of statistics can be used to evaluate model performance
with respect to the diagnostic tests (see Section 3.6.1.4 of the Methodology
report). For this evaluation, we make a table like Table 3.6.1. A “+” in the last

column of Table 3.6.1 means that the assumption is satisfied, a “-” indicates
violation of the assumption.
Statistic Value Critical 5% Assumption
value® satisfied
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Independence Q(6,6) 28.8 12.59 -
r(1) 0.588 0.34 -
r(6) -0.0736 0.34 +
Homoscedasticity H(11) 3.66 3.47 -
Normality N 1.35 5.99 +

Table 3.6.1: Diagnostic test results for the deterministic level model applied to the log
of Norwegian fatalities. Probability that statistic exceeds critical value is 0.05.

Comparison of Table 3.6.1 and the corresponding Table 3.6.1 in the Methodology report, shows
that STAMP uses other choices with respect to the statistics than in the analysis presented in
the Methodology report, i.e. Q(6) instead of Q(10) and r(6) instead of r(4). Below, STAMP's
choices are amplified.

Koopman et al. (2000) give more information on the summary statistics. Here, we restrict

ourselves to some concise remarks.

— For testing normality, the Doornik-Hansen statistic is used, which is, under the null
hypothesis of normally distributed residuals, approximately x*(2) distributed.

— H(h) is a heteroscedasticity test, which is approximately F(h,h) distributed. In STAMP, “h” is
determined as the number of degrees of freedom divided by three and rounded down to the
nearest integer.

— r(71) is the residual autocorrelation at lag 1, distributed approximately as N(0,1/T).

— DW is the Durbin-Watson statistic, which tests for residual autocorrelation at lag 1, and is
approximately N(2,4/T) distributed.

— Q(P,d) is the BOX-Ljung Q-statistic based on the first P residual autocorrelations, which is
distributed approximately as x°(d), where d is P-m+1 with m the number of parameters.

— RPis the coefficient of determination, which is a measure of the proportion of observational
variance which is explained by the model and as such a measure of goodness-of-fit.

At the bottom of the GiveWin results window, check whether the estimated
variances of the disturbances are sufficiently large.

A near zero variance is an indication of a deterministic component. In this model, the only model
component which can vary, the irregular component (i.e., the observation disturbances), has
unequal to zero. The level is fixed. In the deterministic level model, the estimated variance of
the irregular component is equal to the variance of the series. The variance of the log of the
number of Norwegian fatalities is therefore equal to 0.048583. The q-ratio (in the output
between brackets) is the ratio of each variance to the largest and is equal to one, because there
is only one variance, which therefore is the largest.

Next, we will produce some additional output:

»= Inthe STAMP window choose <Test, Further output...> in the menu.

= Select Additional output, Get steady state, Anti-log analysis, and State and
regression output:



3.6 State space models

Further output x|

- Parameters——————— —Dplions
Iv Additional autput ¥ Get steady state

™ | Yariance matizes

[ Transformations

— Final ztate

[ Feprint summary statistics Cancel |

¥ State and regression output

= Click OK.

In the GiveWin Results window, the following additional results are displayed:

Eg 1 : Estimated standard deviations of disturbances.

Component Log_NO_fat (g-ratio)

Irr 0.22042 ( 1.0000)

Eg 1 : Estimated coefficients of final state vector.

Variable Coefficient R.m.s.e. t-value

Lvl 5.9323 0.037801 156.93 [ 0.0000]

Anti-log trend analysis
Trend value at end of period is 377.005.

The estimated standard deviation of the irregular is the square root of the estimated variance of
the irregular (see above). In the deterministic level model, the estimated standard deviation of
the irregular is equal to the standard deviation of the observations in the series.

= Check the values of the estimated coefficients of the final state vector.

The final state vector contains the values of the model components for the last time step of the
observed time series. The state only consists of a level component in this case, and the
estimate for the value of the level in 2003 equals 5.9323, which is the mean of the log of the
Norwegian fatalities series. Moreover, since the level is treated deterministically in this analysis,
its estimated value is actually 5.9323 for all T=34 time points of the series. The t-statistic is
computed as the coefficient (5.9323) divided by its root mean square error (0.0378), and is used
to test whether the estimated value of the level significantly deviates from zero.

= Test the significance of the estimated coefficients of the final state vector.

Under the null hypothesis, the t-statistic has a Student's t-distribution with T-1 degrees of
freedom. Between square brackets behind the t-value, the model output gives the probability
that the absolute value of a Student's t-distributed variable X exceeds the actual, absolute value
of the t-statistic, i.e. Prob(|X|>[t|). This probability is very small here, so it may seem that the
level significantly deviates from zero. However, since the residuals do not satisfy the
assumptions of independence and homoscedasticity (see Table 3.6.1), this t-test is seriously
flawed, and one should be careful not to draw any conclusions from this test.

The anti-log trend analysis presents the value of the estimated level for the original series at the
end of the series (2003). In the deterministic level model, this value is equal to exp(mean of the
log-transformed series).
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Step 4: Graphics of model components

Graphics enlarge the insight in the data and the model results. Therefore, we

will generate figures of the observed and log-transformed time series and the

estimated trend.

= In the STAMP window choose menu <Test, Components graphics...>.
Select Trend, Irregular and Smoothed:

Components graphics ﬂ

—Plot™ and ... Fodel

V¥ Trend

LA

[T Trend plus Cycles and 4R s

— Plot component ...

[ Trend
r - [T Zoom sample
Slape
[T Seazonal — Optionz
[T Cocles and &R ' Smoothed
v lregular ™ Filtered
[T Anti-log analysis
—Plat ...
|£| Detrended [~ Muodified anti-log analysis

[T Seazonally adjusted

r |ndividual zeazonals ITI Cancel |
MNumber of lines IEI ::
- = Store | Help |

= Click OK.

The STAMP Graphics window appears with graphs of the observed log-
transformed time series and the modelled trend and irregular:
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[ GiveWin - STAMP Graphics - 1ol x|
File Edit %ew Tools Modules Window Help
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Irr \/ J
s7s |

D B
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= Examine the figures in the STAMP Graphics window and visually inspect the
bottom figure of observation disturbances for possible serial correlation.

The top figure shows the log-transformed observations and the estimated level, which is just the
mean of the series. The bottom figure shows the irregular component or observation
disturbances, which, in this case, are equal to the deviations of the observations from their
mean value. Visual inspection of the latter figure clearly reveals serial correlation because a
positive disturbance tends to be followed by other positive disturbances while a negative
disturbance tends to be followed by more negative disturbances. This is confirmed by the more
formal tests for independence presented in Table 3.6.1.

= Use the menu <File, Save> or <Ctrl+S> to save these graphs, e.g. as an
Encapsulated Postcript file (*.eps). Minimize the STAMP Graphics window.

Now, we will have a look at the graphs re-expressed in terms of the original
data (i.e., in terms of the original number of fatalities instead of their logarithm):
= Go back to the STAMP window and choose <Test, Components

graphics...>.
= Select Trend, Irregular, Smoothed, and Anti-log analysis.
= (Click OK.

The STAMP Graphics window appears with graphs of the original observed
time series and the modelled (anti-logged) level and irregular components:
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[ GiveWin - STAMP Graphics - 1ol x|
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= Shortly examine the figures in the STAMP Graphics window and check
possible serial dependence of the observation disturbances.

The top figure shows the original observations and the estimated level, which is equal to the
anti-logged mean of the log-transformed series (which is not exactly the same as the mean of
the original series!). The bottom figure shows the irregular component or observation
disturbances, which, in this case, are equal to the deviations from the mean value. Notice that
the mean of the irregular is around one and not zero, because of the anti-logging.

= Again use the menu <File, Save> or <Ctrl+S> to save these graphs and
minimize the STAMP Graphics window.

Step 5: Test of model residuals

STAMP provides the most relevant graphical residual tests as well as more
extensive test statistics for normality, goodness-of-fit, and serial correlation.

The residuals are not the same as the observation disturbances (i.e., the irregular component).

In state space modelling, the estimation process consists of two main steps:

- filtering, in which only the preceding observations are used and which leads to the “filtered
state” and the “one-step ahead predictions”, and

- smoothing, in which all observations are used and which leads to the “smoothed state” and
the “smoothed predictions’.

The residuals correspond to the filtered state, the observation disturbances to the smoothed
state. In fact, the residuals are the standardized one-step ahead prediction errors, whereas the
observation disturbances are the smoothed prediction errors. For more information about the
filtered and smoothed state, see Harvey (1989) or Durbin an Koopman (2001).
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Tests of the model assumptions are usually applied to the residuals, not to the observation
disturbances.

= Go back to the STAMP window and choose <Test, Residuals graphics...>.
= In the Residual graphics window select Residuals, Correlogram, with 8,
Density, Histogram, Normal, QQ plot, and Write diagnostic tests:

Residuals graphics x|

todel
¥ Residuals
¥ Cormelogram
- . with IB _Ij
[ Spectum
v Density ¥ Hiztogram W Momal
v Q0 plot

[ Zoom zample

[ Cumulative sum

[ Curnulative sum of squares

[ Cumulative perodogram 0K I Cancel |

v ‘wiite diagnostic tests Store | Help |

= Click OK.
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The STAMP graphics window in GiveWin shows the standardized residuals and
their correlogram, density function, and normal probability plot: see above.

= In the top left figure of the STAMP Graphics window, check how many
residuals are outside the 95% confidence interval. The two confidence
bounds are indicated by straight lines at the level of about 2 and -2.

Under the assumption of normality, about 95% of the residuals should lie between the two
confidence bounds. The figure shows that only one residual is located outside the confidence
bounds, indicating that the residuals are acceptable with respect to this test.

* In the top right figure of the STAMP Graphics window, check the
correlogram for possible serial dependence of the residuals.

The correlogram presents the residual autocorrelation for lags 1 to 8. Using a 95% confidence
level, the autocorrelation should be between -2A T=-0.34 and 2N T=0.34 (see also Table 3.6.1).
As we can see, for the first three out of eight lags the autocorrelation is outside this range,
indicating serial dependence of the residuals.

* In the bottom left figure of the STAMP Graphics window, compare the
estimated density function with the normal density function with the same
mean and standard deviation, in order to evaluate the degree of normality of
the residuals.

The density diagram shows the distribution of the residuals over discrete intervals in the
histogram. The density function is estimated by “a smoothed function of the histogram using a
normal or Gaussian kernel” (Koopman et al., 2000). From this density diagram, we can
conclude that normality seems to be ok. This conclusion is in agreement with the conclusion on
normality based on the diagnostic tests in Table 3.6.1.
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= |n the bottom right figure of the STAMP Graphics window, check the QQ plot
to evaluate the degree of normality of the residuals.

The QQ plot or normal probability plot is created by rank ordering the residuals from small to
large and comparing them with the normal probability values corresponding to the cumulative
probabilities of 1/(T+1), 2/(T+1), etc. If the residuals are approximately normally distributed, the
plot is an (almost) straight line. From this QQ plot, we can conclude that the residuals are
approximately normally distributed, which is in agreement with the conclusions based on the
density diagram and the diagnostic tests (see Table 3.6.1).

» Use the menu <File, Save> or <Ctrl+S> to save these graphs and minimize
the STAMP Graphics window.

In the Results window of GiveWin the following residual test results (normality,
goodness of fit, serial correlation) have been added:

Normality test for Residual Log_NO_fat

Sample Size 33

Mean -0.835567
Std.Devn. 0.549388
Skewness -0.282549
Excess Kurtosis -0.763819
Minimum -2.048279
Maximum 0.148184

) 0.43909 [0.5076]
) 0.8022 [0.3704]
Normal-BS Chi”2(2) 1.2413 [0.5376]
Normal-DH Chi”2(2) 1.3457 [0.5102]
Goodness-of-fit results for Residual Log_NO_fat

Skewness Chi”2(
Kurtosis Chi”2(
(
(

Prediction error variance (p.e.v) 0.047433
Prediction error mean deviation (m.d) 0.040164
Ratio p.e.v. / m.d in squares 0.887888
Coefficient of determination R2 -0.005917
. based on differences RD2 -3.292629
Information criterion of Akaike AIC -2.989614
of Schwartz (Bayes) BIC -2.944721

Serial correlation statistics for Residual Log_NO_fat.
Durbin-Watson test is 0.226385.
Asymptotic deviation for correlation is 0.174078.

Lag dF SerCorr BoxLjung ProbChi2 (dF)

1 0 0.5876

2 1 0.5052 21.9744 [ 0.0000]
3 2 0.3724 27.3134 [ 0.0000]
4 3 0.1785 28.5818 [ 0.0000]
5 4 0.0032 28.5822 [ 0.0000]
6 5 -0.0736 28.8140 [ 0.0000]
7 6 -0.0734 29.0532 [ 0.0001]
8 7 -0.0637 29.2405 [ 0.0001]

* In the Results window of GiveWin, check the results of the normality test.
Use the Doornik-Hansen statistic. The probability value [between square
brackets] should be larger than 0.05.

The normality test gives the sample size and the mean, standard deviation, skewness, kurtosis,
minimum, and maximum of the residuals. The values of the skewness and kurtosis are tested
against a )(2( 1) distribution, whereas the Bowman-Shenton statistic and the Doornik-Hansen
statistic are tested against a )(2(2) distribution. Koopman et al. (2000) note that the first three
tests are only suitable when applied to very large samples. In this case, with a sample size of
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34, we better use the Doornik-Hansen statistic only. The corresponding probability value is
larger than 0.05 and therefore indicates normality of the residuals. The Doornik-Hansen statistic
was also included in the summary of statistics (see step 1) and in the diagnostic test results
table (Table 3.6.1).

= Consider the goodness-of-fit results and check
o whether the ratio between PEV and MD in squares is close to one;
o whether the coefficient of determination, R?, is positive and close to
one;
o the value of the Akaike Information Criterion (AIC).

The goodness-of-fit results include the prediction error variance (PEV), the prediction error
mean deviation (MD), and the ratio of their squares computed as 2*PEVF/(m*MD?). The
prediction error variance is the variance of the residuals in the steady state, i.e. when the
recursive computation procedure, known as the “Kalman Filter” (Harvey, 1989; Durbin and
Koopman, 2001), has converged. If the Kalman Filter does not converge, the finite PEV is used.
The prediction error mean deviation is the mean deviation of the residuals in the steady state. In
a correctly specified model, the ratio between the squared PEV and the squared MD should be
close to one (Koopman et al., 2000).

Furthermore, the goodness of fit can be evaluated by means of the coefficient of determination,
which is a measure of the extent to which the variance of the observations is explained by the
variance of the model predictions. Koopman et al. (2000) give three variants and define their
area of application as in Table 3.6.2. They note that the coefficient of determination may
become negative, which is an indication of a worse fit than in a simple random level model (or
random level and slope model, or random level, slope and seasonal model).

Coefficient of determination Appropriate to be applied to time series with ...
no slope, no seasonal (stationary)

Rzp slope, no seasonal

st slope and seasonal

Table 3.6.2: The coefficients of determination and their application area. Source:
(Koopman et al., 2000).

Finally, often used goodness-of-fit variables are the Akaike Information Criterion (AIC) and the
Bayes Information Criterion (BIC). The smaller the AIC (or BIC), the better the model. These
variables are computed as log(PEV)+c*m/T, where T is the sample size (34), m the number of
parameters estimated (1), and c is 2 in the AIC and log(T) in the BIC. Note that the AIC is
defined differently in Section 3.6.1.4 of the Methodology report, where it is based on the log-
likelihood.

= Check on serial correlation by using the Box-Ljung statistic as computed for
lags 1 to 8.

The serial correlation statistics include the Durbin-Watson test, the asymptotic deviation for
correlation, and the serial correlation for lags 1 to 8 with the corresponding value of the Box-
Ljung statistic and the corresponding probability value. These probability values should be
larger than 0.05, which is the case for none of the eight lags considered. The Durbin-Watson
and the Box-Ljung statistic were already described above, when dealing with the summary of
statistics (see Step 1: Start of analysis and data load).

Not all of these residual test results have to be checked always. We
recommend to use the AIC (and/or BIC) to test the goodness-of-fit and the Box-
Ljung statistics to test serial independence. The Doornik-Hansen test for
normality is already included in the summary of statistics (see Step 1: Start of
analysis and data load).
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Step 6: Test of auxiliary residuals

The so-called auxiliary residuals are very helpful in finding possible outliers

among the observations and structural breaks, e.g. caused by interventions.

= Go to the STAMP window again and choose <Test, Auxiliary residuals
graphics...>.

= In the Auxiliary residuals graphics window select Irregular, Level residual,
Index plot, Density, Histogram, Normal, QQ plot, Write normality tests, and
Write values exceeding (3.5):

Auxiliary residuals graphics ﬂ

v Iregular todel
v Level residual

I~ | Slope residual

W Index plat
W Density ¥ Histogram W Momal

~ 00 plot [~ Zoom szample

k. I Cancel |
W Wirite normality tests

W wiite values exceeding |3_5 Store | Help |

= (Click OK.
The STAMP graphics window in GiveWin displays the auxiliary residuals of the
irregular and their density function and normal probability plot:
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The auxiliary residuals are standardised smoothed observation and state disturbances. The
auxiliary residuals should be normally distributed with zero mean and unity standard deviation.
The auxiliary residuals of the irregular help to detect possible outlier observations, the auxiliary
residuals of level, slope, and seasonal help to identify structural breaks in the level, slope, and
seasonal component, respectively. For example, if for a certain time point the auxiliary residual
of the irregular is larger than 2 or smaller than -2, then this indicates a possible outlier
observation. However, one should note that according to a normal distribution 5% of the
auxiliary residuals are expected to lie outside the 95% confidence interval of + 2.

» Using the figures in the STAMP Graphics window, check whether the
auxiliary residuals are approximately normally distributed.

In the top figure, we see that none of the 34 standardised smoothed observation disturbances,
i.e. unmistakably less than 5%, is larger than 2 or smaller than -2. The middle and the bottom
figure show that the standardised smoothed observation disturbances are approximately
normally distributed.

Because the level was assumed deterministic in this model, no standardised smoothed level
disturbances were estimated.

= Use the menu <File, Save> or <Ctrl+S> to save these graphs and minimize
the STAMP Graphics window.

In the Results window of GiveWin the following auxiliary residual test results
(normality, goodness of fit, serial correlation) have been added:
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Normality test for IrrRes Log_NO_fat

Sample Size 34

Mean 0.000000

Std.Devn. 1.000000

Skewness 0.103696

Excess Kurtosis -1.063128

Minimum -1.800584

Maximum 1.822140

Skewness Chi~"2 0.060933 [0.8050]

(1)
Kurtosis Chi”®2(1) 1.6012 [0.2057]
Normal-BS Chi~2(2) 1.6621 [0.4356]
Normal-DH Chi~2(2) 2.003 [0.3673]

= Check the result of the Doornik-Hansen test for normality.

The normality test for residuals were already described above. From the Doornik-Hansen test,
we can conclude that the hypothesis of normally distributed auxiliary residuals is accepted; the
probability value between square brackets is larger than 0.05.

Note that in the Results window of GiveWin no values exceeding 3.5 have been
added.

Under the null hypothesis of normality, the probability of an auxiliary residual whose absolute
value exceeds 3.5 is very small, about 0.0005. So, when this happens this is a very strong
indication of an outlier.

Step 7: Conclusion of analysis

The residuals obtained with the analysis of the log of the annual Norwegian
fatalities from 1970 to 2003 with the deterministic level model do not satisfy the
important model assumptions of independence and homoscedasticity (see
Table 3.6.1). It is therefore not the appropriate model for describing this series.
We still discussed all the output that can be obtained from STAMP in this case,
so as to make the reader familiar with the possible options, and for reasons of
later reference.

Step 8: Forecasting

Because the deterministic level model is clearly not appropriate, it does not
make much sense to compute forecasts with this model.
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3.6.2.2 Stochastic level model

The stochastic level model, which is also known as local level model, will be
described more briefly than the deterministic level model, since much of the
output from STAMP has already been discussed and explained in Section
3.6.2.1. The focus will be on the new aspects and the comparison of the results
of this model with the results of the deterministic model.

Step 1: Start of analysis and data load

If you just fitted the deterministic level model, GiveWin and STAMP have
already been started and data is still loaded in the GiveWin window. If you start
here or if you have closed the database, STAMP, or GiveWin after the previous
exercise, please follow the instructions under step 1 of Section 3.6.2.1.

Step 2: Model Formulation

The stochastic (or: local) level model can be fitted in STAMP as follows:

= Choose the menu <Model, Formulate...> in the STAMP window.

» If needed, select the variable Log_NO_fat in the Data selection window and
click the Add button.

= Then click OK.

*» In the Select components window, choose a Stochastic Level, No slope,
Irregular, and No seasonal, as follows:

x
—lewel Slope
i Stochastic " Stochastic ¥ lnegular
" Fixed " Fixed .
[ Autoregression
= Mo level & Mo slope
— Seazonal
" Dummy Cycle:  rtho period
" Trigonometric i ID'S |5
" Fived 2 os 12
CRowsed || Cafs [

Restart | Mewt x> | Finizh I Cancel | Help

= Then click on the Finish button.

Step 3: Model estimation and inspection of results
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= |n the Estimate Model window, select Maximum Likelihood.
= (Click OK.

The model is estimated, and the following output appears in the GiveWin
Results window:

Method of estimation is Maximum likelihood
The present sample is: 1970 to 2003

MaxLik initialising...

it 1 f= 2.09171 eO= 0.52237 step= 1.00000

it 2 f= 2.22405 e0= 0.00514 step= 1.00000

MaxLik iterating...

it 2 f= 2.22407 df= 0.00000 el= 0.00000 ez2= 0.00000 step=
0.00000

Equation 2.
Log_NO_fat = Level + Irregular

Estimation report
Model with 2 parameters ( 1 restrictions).
Parameter estimation sample is 1970. 1 - 2003. 1. (T
Log-likelihood kernel is 2.224067.
Very strong convergence in 2 iterations.
( likelihood cvg 0

gradient cvg 2.435829e-007

parameter cvg 9.737567e-012 )

34).

Eg 2 : Diagnostic summary report.

Estimation sample is 1970. 1 - 2003. 1. (T = 34, n = 33).
Log-Likelihood is 75.6183 (-2 LogL = -151.237).

Prediction error variance is 0.00989161

Summary statistics

Log_NO_fat
Std.Error 0.099457
Normality 1.2746
H( 11) 1.7464
r( 1) -0.12735
r( 7) -0.15301
DW 2.0513
o( 7, 6) 5.4955
R"2 0.79023
Eg 2 : Estimated variances of disturbances.
Component Log_NO_fat (g-ratio)
Irr 0.0032682 ( 0.6949)
Lvl 0.0047030 ( 1.0000)

= Check the results (sample period, log-likelihood, estimated variances of
disturbances).

The output first reports about the estimation process, which is subdivided into initialisation and
further maximisation of the log-likelihood kernel f (see Koopman et al., 2000). In the
deterministic level case, no iterations were needed. Now, however, two parameters have to be
estimated: the observation disturbance variance and the level disturbance variance.
Convergence is reached in two interations, and is very strong. This implies that all of the
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convergence criteria used in the iterative process for parameter estimation are satisfied. These
convergence criteria are likelihood, gradient, and parameter convergence (cvg).

At convergence, the value of the log-likelihood function is 75.6 which is larger than in the
deterministic level case (48.1). The prediction error variance (0.00989) is clearly smaller than for
the deterministic level model (0.0474). These results indicate that the stochastic model yields a
better fit than the deterministic model, albeit at the expense of having estimated one extra
parameter (the variance of the level disturbances).

= The STAMP output results concerning the summary statistics can again be
condensed into the following table (see also Table 3.6.2 in the Methodology
report):

Statistic Value Critical 5% Assumption
value? satisfied
Independence Q(7.6) 5.50 12.59 +
r(1) -0.127 0.34 +
r(7) -0.153 0.34 +
Homoscedasticity H(11) 1.75 3.47 +
Normality N 1.27 5.99 +

Table 3.6.3: Diagnostic test results for the stochastic level model applied to the log of
Norwegian fatalities. ? Probability that statistic exceeds critical value is 0.05.

When we compare the results in Table 3.6.3 with those in Table 3.6.1, we see that also with
respect to the diagnostic tests the stochastic level model performs better than the deterministic
level model, because the present model satisfies all assumptions.

Finally, the output gives the estimated disturbance variances. The irreqular disturbance variance
is about 30% smaller than the level disturbance variance.

= Inthe STAMP window choose <Test, Further output...> in the menu.

= Select Additional output, Get steady state, Anti-log analysis, and State and
regression output.

= (Click OK.
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The GiveWin Results window will display the following additional results:

Eg 3 : Estimated standard deviations of disturbances.

Component Log_NO_fat (g-ratio)

Irr 0.057168 ( 0.8336)

Lvl 0.068578 ( 1.0000)

Eg 3 : Estimated coefficients of final state vector.

Variable Coefficient R.m.s.e. t-value

Lvl 5.6627 0.047118 120.18 [ 0.0000]

Anti-log trend analysis
Trend value at end of period is 287.92.

The value of the level at the end of the period as presented by the anti-log trend analysis (288)
is considerably smaller than the corresponding value in the deterministic model (377).

Step 4: Graphics of model components

* In the STAMP window choose menu <Test, Components graphics...>.
Select Trend, Irregular and Smoothed.
= Click OK.

The STAMP Graphics window appears with graphs of the observed log-
transformed time series and the modelled trend and irregular.

= Use the menu <File, Save> or <Ctrl+S> to save these graphs, e.g. as an
Encapsulated Postcript file (*.eps).

An eps. file can be loaded into a Word document. In the remainder of this
manual we will do so instead of adding a screen print as in Section 3.6.2.1.
Figure 3.6.1 shows the observed log-transformed time series and the stochastic
level component (top), and the irregular component (bottom).
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Figure 3.6.1: Observed log-transformed time series and the local level and irregular
components for the log of Norwegian fatalities.

In the top part of Figure 3.6.1, we see that the estimated trend is close to the (log-transformed)
observations. Furthermore, we can see that the irregular shows a much more random pattern
than in the deterministic case.

= Minimize the STAMP Graphics window.

Step 5: Test of model residuals

» Go back to the STAMP window and choose <Test, Residuals graphics...>.

* In the Residual graphics window select Residuals, Correlogram, with 8,
Density, Histogram, Normal, QQ plot, and Write diagnostic tests.

» C(Click OK.

» Use the menu <File, Save> or <Ctrl+S> to save these graphs.

Figure 3.6.2 shows the standardized residuals and their correlogram, density
function, and normal probability plot as depicted by the STAMP graphics
window in GiveWin.

The top left graph of Figure 3.6.2 illustrates that none of the 34 residuals is outside the 95%
confidence interval, which is very good. From the top right graph, we learn that for none of the
eight lags considered the autocorrelation is outside the 95% confidence interval, which is
defined by the boundaries -2NT=-0.34 and +2ANT=0.34. This is an indication of absence of
serial dependence. The bottom graphs show that the assumption of normality of the residuals is
better satisfied than in the deterministic level model.
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Figure 3.6.2: Residuals and residual tests for the stochastic level model applied to the
log of Norwegian fatalities.

In the Results window of GiveWin, the following residual test results have been
added (only part of the results is printed):

Goodness—-of-fit results for Residual Log_NO_fat

Information criterion of Akaike AIC -4.498421
of Schwartz (Bayes) BIC -4.408635

Serial correlation statistics for Residual Log NO_fat.
Lag dF SerCorr BoxLjung ProbChi2 (dF)

1 0 -0.1273

2 0 -0.0124

3 1 0.1095 1.0526 [ 0.3049]

4 2 -0.1054 1.4951 [ 0.4735]

5 3 -0.1382 2.2833 [ 0.5157]

6 4 -0.2253 4.4556 [ 0.3478]

7 5 -0.1530 5.4955 [ 0.3584]

8 6 -0.0478 5.6010 [ 0.4693]

The goodness-of-fit results are undoubtedly better than in the deterministic case: in the
stochastic model, the AIC is smaller (-4.50 instead of -3.00), just as the BIC (-4.41 instead of -
2.94). For all lags considered, the Box-Ljung test indicates that the most important assumption
of independence is satisfied.

Step 6: Test of auxiliary residuals
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= Go to the STAMP window again and choose <Test, Auxiliary residuals
graphics...>.

= In the Auxiliary residuals graphics window select Irregular, Level residual,
Index plot, Density, Histogram, Normal, QQ plot, Write normality tests, and
Write values exceeding (3.5).

= (Click OK.

» Use the menu <File, Save> or <Ctrl+S> to save these graphs.

The STAMP graphics window in GiveWin displays the auxiliary residuals of the
irregular and of the level component and their density function and normal
probability plot: see Figure 3.6.3.
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Figure 3.6.3: Auxiliary residuals and corresponding tests for the stochastic level model
applied to the log of Norwegian fatalities.
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The following output describes the auxiliary residual test results (normality,
goodness of fit, serial correlation) as can be found in the Results window of
GiveWin.

Normality test for IrrRes Log_NO_fat

Sample Size 34

Mean -0.000312

Std.Devn. 0.995882

Skewness -0.122988

Excess Kurtosis -0.405802

Minimum -2.234331

Maximum 1.935788

Skewness Chi”®2(1) 0.085714 [0.7697]
Kurtosis Chi”2(1) 0.23329 [0.6291]
Normal-BS Chi”"2(2) 0.319 [0.8526]
Normal-DH Chi”2(2) 0.12802 [0.9380]

Normality test for LvlRes Log_NO_fat

Sample Size 34

Mean -0.386541
Std.Devn. 0.904762
Skewness 0.485177
Excess Kurtosis -0.311715
Minimum -2.040092
Maximum 1.633678

Skewness Chi”"2

( 1.3339 [0.2481]
Kurtosis Chi”2(

(

(

1)

1) 0.13765 [0.7106]
2) 1.4716 [0.4791]
2) 1.9093 [0.3849]

Normal-BS Chi~"2
Normal-DH Chi~"2

Both Figure 3.6.3 and the auxiliary residual tests demonstrate that the auxiliary residuals of both
the irregular and the level component satisfy the assumption of normality.

Note that, just as in the deterministic case, in the Results window of GiveWin no
values exceeding 3.5 have been added.

Step 7: Conclusion of analysis

The residuals obtained with the analysis of the log of the annual Norwegian
fatalities from 1970 to 2003 with the local level model satisfy all the model
assumptions of independence, homoscedasticity, and normality. It seems
therefore to be the appropriate model for describing this series.

Step 8: Forecasting

Since the local level model provides an appropriate description of the log of the

Norwegian fatalities series, as a final step in the analysis we will compute

seven-year forecasts for this series. Furthermore, by performing an anti-log

analysis the forecasts will be re-expressed in terms of the original count data.

*» Go to the STAMP window again and choose <Test, Forecasting...>.

» In the Forecasting window select 7 as the number of forecasts, Trend, and
Write forecasts Y:
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Forecasting

™| Increment all Farecast #s by
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= Click OK.
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Figure 3.6.4: Seven-years forecasts (2004-2010) of the stochastic level model applied
to the log of annual Norwegian fatalities, 1970-2003.

The STAMP graphics window in GiveWin displays the log-transformed
observations extended with the seven-years forecasts with 70% confidence
interval (plus and minus one estimated standard deviation) in the top figure and
the log-transformed observations and the extrapolated trend in the bottom
figure: see Figure 3.6.4.

= Use the menu <File, Save> or <Ctrl+S> to save these graphs, e.g. as an
Encapsulated Postcript file (*.eps).

The bottom figure clearly illustrates that the local level model always yields forecasts that are
equal to the last value of the level component in the series. This is in complete agreement with
the fact that we are dealing with a local level model.

In the Results window of GiveWin the forecasts for the log-transformed time
series have been added:

Eg 2 : Forecasts for F-Log_NO_fat.

Period Forecast R.m.s.e. - Rmse + Rmse
2004. 1 5.6627 0.10095 5.5617 5.7636
2005. 1 5.6627 0.12204 5.5406 5.7847
2006. 1 5.6627 0.13999 5.5227 5.8027
2007. 1 5.6627 0.15589 5.5068 5.8186
2008. 1 5.6627 0.17030 5.4924 5.8330
2009. 1 5.6627 0.18359 5.4791 5.8463
2010. 1 5.6627 0.19598 5.4667 5.8587

Project co-financed by the European Commission,
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The list of forecast results gives for each time point the forecast, its standard error, and the
lower and upper bound of the 70% confidence interval.

= Go to the STAMP window again and choose <Test, Forecasting...>.
» In the Forecasting window select 7 as the number of forecasts, Trend,
Modified anti-log analysis, and Write forecasts Y:

x
todel and =

MNumber of forecasts I? _I; ' Log NO fat

— Plot " and farecast af .
VW Trend [T plus Cocles and &Fs

— Plot forecast af ...
[~ Trend

™| Seazonal
[T | Cycles and &R =

— Dptiohz

[~ Zoom sample

v Maodified anti-log analysis

[™ Bias adiustment for taking log

r Inerement all farecast s by IEI.EI'I |_ Save forecasts '

[T Ihdividual increments fon selected s

™| Use available database #s (] 8 I Cancel |

[T Editforecasts of selected Me

= Click OK.

The STAMP graphics window in GiveWin displays the original observations
extended with the seven-years forecasts with 70% confidence interval (plus and
minus one estimated standard deviation) in the top figure and the original
observations and the extrapolated trend in the bottom figure: see Figure 3.6.5.

» Use the menu <File, Save> or <Ctrl+S> to save these graphs.

In the Results window of GiveWin the forecasts for the original observed time
series have been added:
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Eg 2 : Forecasts for E_F-Log_NO_fat.

Anti-log
Period Forecast R.m.s.e. - Rmse + Rmse
2004. 1 287.92 30.584 257.34 318.50
2005. 1 287.92 37.373 250.55 325.29
2006. 1 287.92 43.264 244 .66 331.18
2007. 1 287.92 48.570 239.35 336.49
2008. 1 287.92 53.457 234.46 341.38
2009. 1 287.92 58.023 229.90 345.94
2010. 1 287.92 62.336 225.58 350.26
450 ; ‘ — E_F-Log_NO_fat Forecast
400
350 - [
—
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250 - —
P U e S
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Figure 3.6.5: Anti-logged seven-year forecasts (2004-2010) of the stochastic level
model applied to the log of annual Norwegian fatalities, 1970-2003.
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3.6.3 Local linear trend model

In this section, the slope component will be added to the local level model, so
as to obtain the local linear trend model. The model will be applied to the
number of fatalities as observed in Finland for the period 1970 through 2003.
The theory on this model and the results of its application to the Finnish data
are described in Section 3.6.2 of the Methodology report. This section explains
how the model is built in STAMP.

First, this section presents a step-by-step description of the analysis of the
Finnish fatalities time series using a linear trend model with deterministic level
and deterministic slope, also called the deterministic linear trend model. As in
Section 3.6.2 of the Methodology report, we will show that this model, which is
equivalent to a classical linear regression model, does not satisfy important
model assumptions. Then, we describe the analysis with the linear trend model
with stochastic level and stochastic slope, which is also known as the stochastic
linear trend model or local linear trend model. The latter analysis also includes
forecasting over seven years.

3.6.3.1. Deterministic linear trend model

Step 1: Start of analysis and data load

F|rst we open GiveWin, load the data, and start STAMP.
If GiveWin is not yet open, then start GiveWin2.

= |f GiveWin is still open from the previous analysis, then close all results,
data, and graphics windows in GiveWin by clicking on the cross in the top
right corner of each window.

= Use the menu <File, Open Data File...> to open the file
“FinlandFatalities.in7”.

The data file is loaded and displayed in a minimized window at the bottom of the
GiveWin main window. To view the data file:
= Click on the icon with the two overlapping boxes.

The data file consists of two variables: the annual number of people killed in

road traffic in Finland for the years 1970 through 2003 (“FI_fatalities”) and the

logarithm of the latter time series (“Log_FI_fat”).

* Minimize the data file window again and use the menu <Modules, Start
Stamp> to start the STAMP program.

Step 2: Model Formulation

In this step, we define the deterministic linear trend model:
= In STAMP, choose the menu <Model, Formulate>.
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» In the Data selection window select the variable Log_FI_fat and click Add.

= Then click OK.

= In the Select components window, choose a Fixed level, Fixed slope,
Irregular, and No seasonal:

x
—lewel Slope
i Stochastic " Stochastic ¥ lnegular
{* Fixed * Fixed .
[ Autoregression
Mo level " Mo slope
— Seazonal
" Dummy Cycle:  rtho period
" Trigonometric (I ID-S |5
" Fixed 2|04 12
¥ Mo zeazonal 3 ID.S |2EI
Restart | Meut > | Finizh I Cancel | Help

= Then click on the Finish button.

Step 3: Model estimation and inspection of results

= |n the Estimate Model window, select Maximum Likelihood.
= (Click OK.

The model is estimated, and the following output appears in the GiveWin
Results window:

Eg 1 : Diagnostic summary report.
Estimation sample is 1970. 1 - 2003. 1. (T = 34, n = 32).
Log-Likelihood is 55.7297 (-2 LogL = -111.459).

Prediction error variance is 0.0205839

Summary statistics

Log_FI_fat
Std.Error 0.14347
Normality 3.5468
H( 10) 0.63283
r( 1) 0.76735
r( 6) -0.080113
DW 0.38632
Q( 6, 6) 49.093
Rd"2 -1.2238
Eg 1 : Estimated variances of disturbances.
Component Log_FI_fat (g-ratio)

" Transport
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Irr 0.021360 ( 1.0000)

= Check the results (sample period, log-likelihood, estimated variance of
disturbances).

= The output results concerning the summary statistics can again be
condensed into the following table (see also Table 3.6.3 in the Methodology
report):

Statistic Value Critical 5% Assumption satisfied
value?
Independence Q(6,6) 49.1 12.59 -
r(1) 0.767 0.34 -
r(6) -0.0801 0.34 +
Homoscedasticity H(10) 0.633 3.72 +
Normality N 3.55 5.99 +

Table 3.6.4: Diagnostic test results for the deterministic linear trend model applied to
the log of Finnish fatalities. 2 Probability that statistic exceeds critical value is 0.05.

Table 3.6.3 in the Methodology report gives the reciprocal value of the homoscedasticity test,
because both the original value and its reciprocal should be smaller than the critical 5% value
and, in this case, the reciprocal is larger than the original value. To stay close to the STAMP
results, Table 3.6.4 does not present the reciprocal value of the homoscedasticity test statistic.
Since the reciprocal of H(10) equals 1/H(10) = 1/0.633 = 1.580, and because this value is still
smaller than the critical value of 3.72, the assumption of homoscedasticity is satisfied. However,
the most important assumption of independence is clearly not satisfied in this analysis.

= Inthe STAMP window choose <Test, Further output...> in the menu.

= Select Additional output, Get steady state, Anti-log analysis, and State and
regression output.

= (Click OK.

In the GiveWin Results window, the following additional results are displayed:

Eg 1 : Estimated standard deviations of disturbances.

Component Log_FI_fat (g-ratio)

Irr 0.14615 ( 1.0000)

Eg 1 : Estimated coefficients of final state vector.

Variable Coefficient R.m.s.e. t-value

Lvl 5.9235 0.049044 120.78 [ 0.0000]
Slp -0.028733 0.0025548 -11.246 [ 0.0000]

Anti-log trend analysis
Trend value at end of period is 373.731.
Growth rate at end of period is -0.0287328 ( -2.87328 % per *“year”).

From the estimated coefficients of the final state vector and their t-values, we can conclude that,
in the final state, both the level and the negative slope component are significantly different from
zero. In classical linear regression terms, we would say that both the intercept and the
regression coefficient significantly deviate from zero. However, these tests are flawed because
the residuals do not satisfy the assumption of independence (see Table 3.6.4).

From the anti-log trend analysis, we can see that the estimated trend value at the end of the
period is 374, with a reduction rate of almost 3% per year.
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Step 4: Graphics of model components

= In the STAMP window choose menu <Test, Components graphics...>.
Select (Plot Y and ...) Trend, Slope, Irregular and Smoothed.
= Click OK.

The STAMP Graphics window appears with graphs of the observed log-
transformed time series and the modelled trend, slope, and irregular (see Figure
3.6.6).
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Figure 3.6.6: Observed log-transformed time series and the deterministic linear trend
(top graph), slope (middle graph), and irreqular component (bottom graph) for the log of
Finnish fatalities.

In the top part of Figure 3.6.6, we see that the estimated trend is a a straight line; it is in fact a
classical linear regression line. The middle graph displays the constant, negative slope. The
bottom graph clearly indicates serial dependence in the observation disturbances.

= Use the menu <File, Save> or <Ctrl+S> to save these graphs, e.g. as an
Encapsulated Postcript file (*.eps). Minimize the STAMP Graphics window.

Step 5: Test of model residuals

» Go back to the STAMP window and choose <Test, Residuals graphics...>.
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*» In the Residual graphics window select Residuals, Correlogram, with 8,
Density, Histogram, Normal, QQ plot, and Write diagnostic tests.

= (Click OK.

= Use the menu <File, Save> or <Ctrl+S> to save these graphs and minimize
the STAMP Graphics window.

Figure 3.6.7 shows the standardized residuals and their correlogram, density
function, and normal probability plot as depicted by the STAMP graphics
window in GiveWin.

The top left graph of Figure 3.6.7 shows that 1 out of the 34 residuals, i.e. 3%, lies outside the
95% confidence interval; this is acceptable since we would expect about 1 out of 20 to fall
outside this range. From the top right graph, we learn that for the first 3 of the 8 lags considered
the autocorrelation is outside the 95% confidence interval, which is defined by the boundaries
-2NT=-0.34 and +2AT=0.34. The bottom graphs show that the assumption of normality of the
residuals is quite well satisfied, which confirms the normality test results in Table 3.6.4.
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Figure 3.6.7: Residuals and residual tests for the deterministic linear trend model
applied to the log of Finnish fatalities.

In the Results window of GiveWin, the following residual test results can be
found (only part of the results are printed below):
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Goodness—-of-fit results for Residual Log_FI_fat

Information criterion of Akaike AIC -3.765598

. of Schwartz (Bayes) BIC -3.675812
Serial correlation statistics for Residual Log_FI_fat.
Lag dF SerCorr BoxLjung ProbChi2 (dF)

1 0 0.7673

2 1 0.6601 36.4701 [ 0.0000]

3 2 0.5001 45.8532 [ 0.0000]

4 3 0.2712 48.7118 [ 0.0000]

5 4 0.0528 48.8243 [ 0.0000]

6 5 -0.0801 49.0928 [ 0.0000]

7 6 -0.2189 51.1785 [ 0.0000]

8 7 -0.3337 56.2274 [ 0.0000]

For all lags considered, the Box-Ljung test indicates that the most important assumption of
independence is not satisfied, as we already noted on the basis of Figure 3.6.7 and Table 3.6.4.

Step 6: Test of auxiliary residuals

Because the residuals obtained with the deterministic linear trend model
analysis does not satisfy the important model assumption of independence, we
skipped this analysis step.

Step 7: Conclusion of analysis

The residuals obtained with the analysis of the log of the annual Finnish
fatalities from 1970 to 2003 with the deterministic linear trend model do not
satisfy the model assumption of independence. Therefore, it is not the
appropriate model for describing this time series. This also means that a
classical linear regression model (without explanatory variables) would not be
able to appropriately describe this series.

Step 8: Forecasting

Because the deterministic linear trend model is not appropriate, it does not
make much sense to compute forecasts with this model.

Step 9: Exercise

Apply a deterministic linear trend model to the dataset which was used in the
part of the manual dedicated to classical linear regression (Section 3.2.1). Use
the annual averages and compare the results with the corresponding results in
Section 3.2.1.
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Project co-financed hy the European Commission, Directorate-General Transport a_ndErv

Page 221



Chapter 3

3.6.3.2. Stochastic linear trend model

Step 1: Start of analysis and data load

If you just fitted the deterministic linear trend model, GiveWin and STAMP have
already been started and data is still loaded in the GiveWin window. If you start
here or if you have closed the database, STAMP, or GiveWin after the previous
exercise, please follow the instructions under step 1 of Section 3.6.3.1.

Step 2: Model Formulation

The stochastic (or: local) linear trend model can be fitted in STAMP as follows:

= Choose the menu <Model, Formulate...>.

» |If needed, select the variable Log_FI_fat in the Data selection window and
click the Add button.

= Then click OK.

* In the Select components window, choose a Stochastic Level, Stochastic
slope, Irregular, and No seasonal:

x

Slope
& Stochastic ¥ Imegular

" Fixed " Fixed .

[ Autoregression
= Mo level " Mo slope
— Seazonal

" Dummy Cycle:  rtho period

" Trigonometric i ID-S |5

" Fived 2 os 12

¥ Mo zeazonal 2 ID.S |2EI

Restart | Mewt x> | Finizh I Cancel | Help

= Then click on the Finish button.

Step 3: Model estimation and inspection of results

= |n the Estimate Model window, select Maximum Likelihood.

= Click OK.
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The model is estimated, and the following output appears in the GiveWin
Results window:

Equation 1.
Log_FI_fat = Trend + Irregular

Estimation report
Model with 3 parameters ( 2 restrictions).
Parameter estimation sample is 1970. 1 - 2003. 1. (T = 34) .
Log-likelihood kernel is 2.121946.
Very strong convergence in 12 iterations.
( likelihood cvg 3.160187e-014
gradient cvg 2.331024e-007
parameter cvg 1.878562e-008 )

Eg 1 : Diagnostic summary report.
Estimation sample is 1970. 1 - 2003. 1. (T = 34, n = 32).
Log-Likelihood is 72.1462 (-2 LogL = -144.292).

Prediction error variance is 0.0100779

Summary statistics

Log_FI_fat
Std.Error 0.10039
Normality 0.39376
H( 10) 0.50989
r( 1) -0.028431
r( 8) -0.15533
DW 2.0137
Q( 8, 6) 5.8640
Rd"2 -0.088796
Eg 1 : Estimated variances of disturbances.
Component Log_FI_fat (g-ratio)
Irr 0.0032008 ( 1.0000)
Lvl 0.00000 ( 0.0000)
Slp 0.0015332 ( 0.4790)

From the estimated variances of disturbances, we see that the variance
corresponding to the level component (Lvl) is (almost) equal to zero, meaning
that this component does vary over time, and that we may as well treat it
deterministically. Therefore, we repeat the analysis (steps 2 and 3) with a
deterministic instead of a stochastic level component (select Fixed level in the
STAMP Select components window). This yields the following output in the
GiveWin results window:

Equation 2.
Log_FI_fat = Trend + Irregular

Estimation report
Model with 2 parameters ( 1 restrictions).
Parameter estimation sample is 1970. 1 - 2003. 1. (T = 34).
Log-likelihood kernel is 2.121946.
Very strong convergence in 2 iterations.
( likelihood cvg 1.21594e-013
gradient cvg 1.811884e-008
parameter cvg 4.042691e-008 )

Eg 2 : Diagnostic summary report.
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Estimation sample is 1970. 1 - 2003. 1. (T = 34, n = 32).
Log-Likelihood is 72.1462 (-2 LogL = -144.292).
Prediction error variance is 0.0100779

Summary statistics

Log_FI_fat
Std.Error 0.10039
Normality 0.39376
H( 10) 0.50989
r( 1) -0.028427
r( 7) -0.059707
DW 2.0137
Q( 7, 6) 4.7703
Rd"2 -0.088796
Eg 2 : Estimated variances of disturbances.
Component Log_FI_fat (g-ratio)
Irr 0.0032008 ( 1.0000)
Slp 0.0015331 ( 0.4790)

= Check the results (sample period, log-likelihood, estimated variance of
disturbances).

The estimation report tells that there was very strong convergence in 2 iterations. The estimated
variances of both the irregular and the slope component are unequal to zero. The diagnostic
summary report shows that the value of the log-likelihood function is 72.1, which is larger than in
the deterministic linear trend case (55.7). The prediction error variance (0.0101) is clearly
smaller than for the deterministic level model (0.0206). These results indicate that the
deterministic level and stochastic slope model, also known as the “smooth trend model’, is
performing better than the fully deterministic model.

= The STAMP output results concerning the summary statistics can again be
condensed into the following table (see also Table 3.6.4 in Section 3.6.2 of
the Methodology report):

Statistic ~ Value Critical 5%  Assumption satisfied
value?
Independence Q(7,6) 4.77 12.59 +
r(1) -0.0284 0.34 +
r(7) -0.0597 0.34 +
Homoscedasticity H(10) 0.510 3.72 +
Normality N 0.394 5.99 +

Table 3.6.5: Diagnostic test results for the deterministic level and stochastic slope
model applied to the log of Finnish fatalities. ®Probability that statistic exceeds critical
value is 0.05.

When we compare the results in Table 3.6.5 with those in Table 3.6.4 of the manual, we see
that also with respect to the diagnostic tests the deterministic level and stochastic slope model
is better than the deterministic linear trend model. The stochastic model satisfies all model
assumptions, whereas the deteministic model did not satisfy the most important assumption, i.e.
the assumption of independence.

= Inthe STAMP window choose <Test, Further output...> in the menu.

= Select Additional output, Get steady state, Anti-log analysis, and State and
regression output.

= (Click OK.
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The GiveWin Results window will display the following additional results:

Eg 2 : Estimated standard deviations of disturbances.

Component Log_FI_fat (g-ratio)

Irr 0.056576 ( 1.0000)

Slp 0.039155 ( 0.6921)

Eg 2 : Estimated coefficients of final state vector.

Variable Coefficient R.m.s.e. t-value

Lvl 5.9689 0.047371 126 [ 0.0000]
Slp -0.035603 0.053297 -0.66802 [ 0.5089]

Anti-log trend analysis
Trend value at end of period is 391.056.
Growth rate at end of period is -0.0356035 ( -3.56035

o

per “year”).

From the estimated coefficients of the final state vector and their t-values, we can conclude that,
in the final state, the level component is significantly different from zero whereas the negative
slope component is not.

The trend value at the end of the period as presented by the anti-log trend analysis (391) is
larger than the corresponding value in the deterministic model (374).

Step 4: Graphics of model components

* In the STAMP window choose menu <Test, Components graphics...>.
Select Trend, Slope, Irregular and Smoothed.
= Click OK.

The STAMP Graphics window appears with graphs of the observed log-
transformed time series and the modelled trend, slope, and irregular (see Figure
3.6.8).
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Figure 3.6.8: Observed log-transformed time series and the trend of the deterministic
level stochastic slope model (top graph), slope component (middle graph), and

irregular component (bottom graph) for the log of Finnish fatalities.

In the middle graph of Figure 3.6.8, we see that a negative slope component corresponds to a
decreasing trend, whereas a positive slope component corresponds to an increasing trend. The
slope is negative in 1971-1980, (almost) zero in 1981-1983, positive in 1984-1988, negative in
1989-1996, and (almost) negative or slightly negative in 1997-2003. Note that the negative
slope component in the final state was found to be insignificantly different from zero (see step

3).

= Use the menu <File, Save> or <Ctrl+S> to save these graphs, e.g. as an
Encapsulated Postcript file (*.eps). Minimize the STAMP Graphics window.

Step 5: Test of model residuals

= Go back to the STAMP window and choose <Test, Residuals graphics...>.
= In the Residual graphics window, select Residuals, Correlogram, with 8,

Density, Histogram, Normal, QQ plot, and Write diagnostic tests.
= (Click OK.

Figure 3.6.9 shows the standardized residuals and their correlogram, density
function, and normal probability plot as depicted by the STAMP graphics

window in GiveWin.
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Figure 3.6.9: Residuals and residual tests for the deterministic level stochastic slope
model applied to the log of Finnish fatalities.

The top left graph of Figure 3.6.9 shows that 1 out of the 34 residuals, i.e. 3%, lies outside the
95% confidence interval; this is acceptable since we would expect about 1 out of 20 to fall
outside this range. From the top right graph, we learn that for none of the 38 lags considered the
autocorrelation is outside the 95% confidence interval, which is defined by the boundaries -
2AT=-0.34 and +2NT=0.34. The bottom graphs show that the assumption of normality of the
residuals is quite well satisfied, which confirms the normality test results in Table 3.6.5.

= Use the menu <File, Save> or <Ctrl+S> to save these graphs and minimize
the STAMP Graphics window.

In the Results window of GiveWin, the following residual test results can be
found (only part of the results are printed below):

Goodness-of-fit results for Residual Log_FI_fat

Information criterion of Akaike AIC -4.420941
of Schwartz (Bayes) BIC -4.286262

Serial correlation statistics for Residual Log_FI_fat.
Lag dF SerCorr BoxLjung ProbChi2 (dF)

1 0 -0.0284

2 0 0.0631

3 1 0.1610 1.1450 [ 0.2846]

4 2 -0.0937 1.4865 [ 0.4756]

5 3 -0.2734 4.4980 [ 0.2125]

6 4 -0.0529 4.6151 [ 0.3291]

7 5 -0.0597 4.7703 [ 0.4446]

8 6 -0.1553 5.8640 [ 0.4386]
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The goodness-of-fit is clearly better than in the fully deterministic case: the AIC is smaller (-4.42
instead of -3.77) as well as the BIC (-4.29 instead of -3.68).

For all lags considered, the Box-Ljung test indicates that the most important model assumption,
i.e. independence, is satisfied, as we already noted on the basis of Figure 3.6.9 and in Table
3.6.5.

Step 6: Test of auxiliary residuals

= Go to the STAMP window again and choose <Test, Auxiliary residuals
graphics...>.

» In the Auxiliary residuals graphics window select Irregular, Level residual,
Index plot, Density, Histogram, Normal, QQ plot, Write normality tests, and
Write values exceeding (3.5).

» (Click OK.

» Use the menu <File, Save> or <Ctrl+S> to save these graphs.

The STAMP graphics window in GiveWin displays the auxiliary residuals of the
irregular and of the level component and their density function and normal
probability plot: see Figure 3.6.10.
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Figure 3.6.10: Auxiliary residuals and corresponding tests for the deterministic level
stochastic slope model applied to the log of Finnish fatalities.

The following output describes the auxiliary residual test results for normality as
can be found in the Results window of GiveWin.
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Normality test for IrrRes Log_FI_fat

Sample Size 34

Mean -0.034110
Std.Devn. 1.028845
Skewness -0.165816
Excess Kurtosis -1.021443
Minimum -2.007568
Maximum 1.881536

Skewness Chi”2(1) 0.15581 [0.6930]
Kurtosis Chi”®2(1) 1.4781 [0.2241]
Normal-BS Chi”"2(2) 1.6339 [0.4418]
Normal-DH Chi”"2(2) 2.0182 [0.3645]

Normality test for IrrRes Log_FI_fat

Sample Size 34

Mean -0.034110

Std.Devn. 1.028845

Skewness -0.165816

Excess Kurtosis -1.021443

Minimum -2.007568

Maximum 1.881536

Skewness Chi”®2(1) 0.15581 [0.6930]
Kurtosis Chi”2(1) 1.4781 [0.2241]
Normal-BS Chi”"2(2) 1.6339 [0.4418]
Normal-DH Chi”~2(2) 2.0182 [0.3645]

Figure 3.6.10 and the auxiliary residual tests demonstrate that the auxiliary residuals of both the
irregular and the slope component satisfy the assumption of normality. Note that none of the
auxiliary residuals of the irregular (top left graph in Figure 3.6.10) is larger than 2 or smaller than
-2, whereas only one of the auxiliary residuals of the slope component (middle left graph)
slightly exceeds these bounds. So, there is no indication of outlier observations or structural
breaks in the slope component.

Step 7: Conclusion of analysis

The residuals obtained with the analysis of the log of the annual Finnish
fatalities from 1970 to 2003 with the deterministic level and stochastic slope
model (or: smooth trend model) satisfy all the model assumptions of
independence, homoscedasticity, and normality. Therefore, it is an appropriate
model for describing this series.

Step 8: Forecasting

Since the deterministic level stochastic slope model provides an appropriate
description of the log of the Finnish fatalities series, as a final step in the
analysis we will compute seven-year forecasts for this series. By performing an
anti-log analysis the forecasts will be re-expressed in terms of the original count
data. The forecasts are made according to the instructions in step 8 of the
analysis of the local level model (Section 3.6.2.2).

» Go to the STAMP window again and choose <Test, Forecasting...>.

» In the Forecasting window select 7 as the number of forecasts, Trend,
Modified anti-log analysis, and Write forecasts Y.

= Click OK.
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The STAMP graphics window in GiveWin displays the original observations
extended with the seven-years forecasts with 70% confidence interval (i.e., plus
and minus one estimated standard deviation) at the top, and the original
observations and the extrapolated trend at the bottom of Figure 3.6.11.

Forecast ‘

|—— E_F-Log\FI_fat

600 ) \

400 - ST ST T T

[ L L L L L L L L L L L L L L L L L L L L L L L
1985 1990 1995 2000 2005 2010

F-Trend_ME_Log_FI_fat|

500 -

400l N ,j:;:\\\\:t:::

—
—

L L L L 1 L L L L 1 L L L L 1 L L L L 1 L L L Pi—] L
1985 1990 1995 2000 2005 2010

Figure 3.6.11: Anti-logged seven-year forecasts (2004-2010) of the deterministic level
stochastic slope model applied to the log of annual Finnish fatalities, 1970-2003.

The bottom figure illustrates that a linear trend model always yields forecasts by extending the
last value of the trend (i.e., level plus slope) in the series. This is in complete agreement with the
fact that we are dealing with a linear trend model.

= Use the menu <File, Save> or <Ctrl+S> to save these graphs, e.g. as an
Encapsulated Postcript file (*.eps).

In the Results window of GiveWin the forecasts for the original observed time
series have been added:
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Eg 1 : Forecasts for E_F-Log_FI_fat.

Anti-log
Period Forecast R.m.s.e. - Rmse + Rmse
2004. 1 377.38 41.142 336.24 418.52
2005. 1 364.18 59.896 304.28 424.08
2006. 1 351.44 84.011 267.43 435.45
2007. 1 339.15 112.49 226.66 451.64
2008. 1 327.29 145.04 182.25 472 .32
2009. 1 315.84 181.72 134.11 497.56
2010. 1 304.79 222.82 81.973 527.61

The list of forecast results gives for each time point the forecast, its standard error, and the
lower and upper bound of the 70% confidence interval.
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3.6.4 Local linear trend plus seasonal model

In this section, the seasonal component will be added to the local linear trend
model, so as to obtain the local linear trend plus seasonal model. The model will
be applied to the monthly number of drivers killed or seriously injured (KSI) as
observed in the UK for the period January 1969 through December 1984.
Modelling a seasonal component only makes sense when we are dealing with
seasonal (monthly, quarterly, weekly, etc.) time series data, and this type of
component was therefore not considered in the analysis of the annual data
discussed in Section 3.6.2 and 3.6.3. In addition to the theory on this model and
the results of its application to the UK data, as presented in Section 3.6.3 of the
Methodology report, this section explains how the model is built in STAMP and
how the results can be interpreted.

This section presents a step-by-step description of the analysis of the UK
drivers KSI time series using a local linear trend plus seasonal model. Contrary
to the setup of Sections 3.6.2 and 3.6.3, in this section all components will be
assumed stochastic from the start. As such, this analysis example follows the
recommended way of analysing time series data by state space techniques
(see Section 3.6.7).

Step 1: Start of analysis and data load

First, we open GiveWin, load the data, and start STAMP.

» |f GiveWin is not yet open, then start GiveWin2.

» |f GiveWin is already open from a previous exercise, then close all results,
data, and graphics windows in GiveWin by clicking on the icon with the cross
in the top right corner of each window.

»= Use the menu <File, Open Data File...> to open the file “UKdriversKSL.in7".

The data file is loaded and displayed in a minimized window at the bottom of the
GiveWin main window. To view the data file:
= Click on the icon with the two overlapping boxes.

The data file consists of four variables: the monthly number of drivers KSI in the
UK for the months January 1969 through December 1984 (UKdriversKSI), the
petrol price in the UK in the same months (PetrolPrice), and the logarithm of the
same time series (Log_UKdriverskSI and Log_PetrolPrice). The variable
PetrolPrice will be used in Section 3.6.6.

= Minimize the data file window again and use the menu <Modules, Start
Stamp> to start the STAMP program.

Step 2: Model Formulation

In this step, we define the local linear trend plus seasonal model:



3.6 State space models

In STAMP, choose the menu <Model, Formulate...>.
In the Data selection window select the variable Log_UKdriversKSlI.

Then click OK.

In the Select components window, choose a Stochastic Level, Stochastic
slope, Irregular, and Dummy seasonal:

x
— Lewel Slope
i Stochastic i Stochastic ¥ lnegular
" Fixed " Fixed .
[ Autoregression
= Mo level " Mo slope
— Seazonal
Cycle:  rtho period
" Trigonometric i ID-S |5
" Fived 2 os 12
" Mo zeazonal I~ 3|os f20
Restart | Mewt x> | Finizh I Cancel | Help

= Then click on the Finish button.

Step 3: Model estimation and inspection of results

= |n the Estimate Model window, select Maximum Likelihood.
= (Click OK.

The model is estimated, and the following output appears in the GiveWin
Results window:

Equation 4.

Log_UKdriversKSI = Trend + Dummy seasonal + Irregular
Estimation report
Model with 4 parameters (
Parameter estimation sample is 1969.
Log-likelihood kernel is 2.279365.
Very strong convergence in 11 iterations.
( likelihood cvg 7.253531e-013

gradient cvg 7.576162e-008

parameter cvg 4.127312e-006 )

3 restrictions).

1 - 1984.12. (T =

192).

Eqg 4 Diagnostic summary report.

1 - 1984.12. (T = 192, n =
(-2 LogL = -875.276).

Estimation sample is 1969.
Log-Likelihood is 437.638

" Transport
Project co-financed by the European Commission, Directorate-General Transport and Energy

Page 233



Chapter 3

Prediction error variance is 0.00556772

Summary statistics
Log_UKdriver

Std.Error 0.074617

Normality 3.7108

H( 59) 1.0905

r( 1) 0.026288

r(l2) 0.029382

DW 1.9311

(12, 9) 12.378

Rs”2 0.23046
Eg 4 : Estimated variances of disturbances.

Component Log_UKdriversKSI (g-ratio)

Irr 0.0034678 ( 1.0000)
Lvl 0.0010009 ( 0.2886)
Slp 0.00000 ( 0.0000)
Sea 0.00000 ( 0.0000)

Inspecting the estimated variances of the disturbances, we see that the
variances corresponding to the slope component (Slp) and the seasonal
component (Sea) are (almost) equal to zero. Therefore, we repeat the analysis
(steps 2 and 3) with a deterministic slope and seasonal component (by
choosing Stochastic level, Fixed slope, and Fixed seasonal in the STAMP
Select components window). This yields the following output in the GiveWin
results window:

Equation 5.
Log_UKdriversKSI = Trend + Fixed seasonal + Irregular

Estimation report
Model with 2 parameters ( 1 restrictions).
Parameter estimation sample is 1969. 1 - 1984.12. (T = 192).
Log-likelihood kernel is 2.279365.
Very strong convergence in 3 iterations.
( likelihood cvg 1.23912e-013
gradient cvg 3.566036e-008
parameter cvg 3.127122e-007 )

Eg 5 : Diagnostic summary report.
Estimation sample is 1969. 1 - 1984.12. (T = 192, n = 190).
Log-Likelihood is 437.638 (-2 LogL = -875.276).

Prediction error variance is 0.00550388

Summary statistics
Log_UKdriver

Std.Error 0.074188

Normality 2.9938

H( 63) 1.0297

r( 1) 0.029490

r(1l2) -0.0070854

DW 1.9343

0(12,11) 12.196

Rs"2 0.23928
Eg 5 : Estimated variances of disturbances.

Component Log_UKdriversKSI (g-ratio)
Irr 0.0034678 ( 1.0000)
Lvl 0.0010009 ( 0.2886)
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= Check the results (sample period, log-likelihood, estimated variance of
disturbances).

The estimation report tells that there was very strong convergence in three iterations. The
diagnostic summary report shows that the number of observations is 192, that the value of the
log-likelihood function at convergence is 437, and that the prediction error variance is 0.00550.
The estimated variance of the level disturbances is unequal to zero.

» Inthe STAMP window choose <Test, Further output...> in the menu.

= Select Additional output, Get steady state, Anti-log analysis, and State and
regression output.

= (Click OK.

The GiveWin Results window will display the following additional results:

Eg 5 : Estimated standard deviations of disturbances.

Component Log_UKdriversKSI (g-ratio)

Irr 0.058888 ( 1.0000)

Lvl 0.031637 ( 0.5372)

Eg 5 : Estimated coefficients of final state vector.

Variable Coefficient R.m.s.e. t-value

Lvl 7.2404 0.038792 186.65 [ 0.0000]
Slp -0.00090532 0.0023076 -0.39233 [ 0.6953]
Sea_ 1 0.017176 0.016254 1.0567 [ 0.2920]
Sea_ 2 -0.10933 0.016219 -6.7409 [ 0.0000]
Sea_ 3 -0.070091 0.016192 -4.3288 [ 0.0000]
Sea_ 4 -0.14686 0.016171 -9.0817 [ 0.0000]
Sea_ 5 -0.055472 0.016157 -3.4333 [ 0.0007]
Sea_ 6 -0.092507 0.016150 -5.7279 [ 0.0000]
Sea_ 7 -0.043175 0.016150 -2.6734 [ 0.0082]
Sea_ 8 -0.032024 0.016157 -1.982 [ 0.0489]
Sea_ 9 0.0058909 0.016171 0.36429 [ 0.7160]
Sea_10 0.086848 0.016192 5.3637 [ 0.0000]
Sea_11 0.19221 0.016219 11.851 [ 0.0000]

Anti-log trend analysis

Trend value at end of period is 1394.63.

Growth rate at end of period is -0.000905317 ( -1.08638 % per
uyear") .

From the estimated coefficients of the final state vector and their t-values, we can conclude that
the (constant) value of -0.00090532 for the slope component does not significantly deviate from
zero. The same applies to the values for the first and ninth estimates of the seasonal
component (corresponding to the months of January and September).

Because the deterministic slope component is not significantly different from
zero, we drop the slope component from the model and repeat the analysis
(steps 2 and 3) with a stochastic level deterministic seasonal model (by
selecting Stochastic level and Fixed seasonal in the STAMP Select components
window). This yields the following output in the GiveWin results window:

Equation 6.
Log_UKdriversKSI = Level + Fixed seasonal + Irregular

Estimation report
Model with 2 parameters ( 1 restrictions).
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Parameter estimation sample is 1969. 1 - 1984.12. (T 192).
Log-likelihood kernel is 2.313251.
Very strong convergence in 2 iterations.
( likelihood cvg 1.343833e-015
gradient cvg 2.082778e-008

parameter cvg 3.620022e-009 )
Eg 6 : Diagnostic summary report.
Estimation sample is 1969. 1 - 1984.12. (T = 192, n = 191).
Log-Likelihood is 444.144 (-2 LogL = -888.289).

Prediction error variance is 0.00550316

Summary statistics
Log_UKdriver

Std.Error 0.074183

Normality 3.2218

H( 63) 1.0686

r( 1) 0.041087

r(l2) -0.00017919

DW 1.9155

0(12,11) 12.000

Rs”2 0.23938
Eg 6 : Estimated variances of disturbances.

Component Log_UKdriversKSI (g-ratio)
Irr 0.0035140 ( 1.0000)
Lvl 0.00094564 ( 0.2691)

» Check the results (sample period, log-likelihood, estimated variance of
disturbances).

The estimation report tells that there was very strong convergence in two iterations. The
estimated variance of the level disturbances is unequal to zero, meaning that the level
component should be treated stochastically. The diagnostic summary report shows that the
value of the log-likelihood function at convergence is 444, which is a somewhat larger value
than in the stochastic level and deterministic slope and seasonal model (437).

= |Inthe STAMP window choose <Test, Further output...> in the menu.

= Select Additional output, Get steady state, Anti-log analysis, and State and
regression output.

» C(Click OK.

The GiveWin Results window will display the following additional results:

Eg 6 : Estimated standard deviations of disturbances.

Component Log_UKdriversKSI (g-ratio)

Irr 0.059279 ( 1.0000)

Lvl 0.030751 ( 0.5188)

Eg 6 : Estimated coefficients of final state vector.

Variable Coefficient R.m.s.e. t-value

Lvl 7.2414 0.038351 188.82 [ 0.0000]
Sea_ 1 0.017272 0.016225 1.0646 [ 0.2884]
Sea_ 2 -0.10925 0.016192 -6.7474 [ 0.0000]
Sea_ 3 -0.070030 0.016165 -4.3321 [ 0.0000]
Sea_ 4 -0.14682 0.016146 -9.0933 [ 0.0000]
Sea_ 5 -0.055446 0.016132 -3.4369 [ 0.0007]
Sea_ 6 -0.092499 0.016126 -5.7361 [ 0.0000]
Sea_ 7 -0.043184 0.016126 -2.678 [ 0.0081]
Sea_ 8 -0.032050 0.016132 -1.9867 [ 0.0484]
Sea_ 9 0.0058471 0.016146 0.36215 [ 0.7176]
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Sea_10 0.086786 0.016165 5.3686 [ 0.0000]
Sea_11 0.19213 0.016192 11.866 [ 0.0000]

Anti-log trend analysis
Trend value at end of period is 1396.04.

The values for the first and ninth estimates of the seasonal component (corresponding to the
months of January and September) do not significantly deviate from zero. At the end of the
period, the trend value as presented by the anti-log trend analysis is 1396.

= The STAMP output results concerning the summary statistics can be
condensed into the following table (see also Table 3.6.6 in the Methodology
report):

Statistic Value Critical 5% Assumption
value? satisfied
Independence Q(12,11) 12.0 19.68 +
r(1) 0.0411 0.14 +
r(12) -0.00018 0.14 +
Homoscedasticity | H(63) 1.07 1.65 +
Normality N 3.22 5.99 +

Table 3.6.6: Diagnostic test results for the stochastic level and deterministic seasonal
model applied to the log of the number of UK drivers KSI. ?Probability that statistic
exceeds critical value is 0.05.

From Table 3.6.6, we can conclude that the stochastic level and deterministic
seasonal model satisfies all model assumptions.

Step 4: Graphics of model components

* In the STAMP window choose menu <Test, Components graphics...>.
Select Trend, Seasonal, Irregular, and Smoothed.
= Click OK.
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Figure 3.6.12: Observed log-transformed time series and the trend of the stochastic

level and deterministic seasonal model (top graph), seasonal component (middle
graph), and irregular component (bottom graph) for the log of UK drivers KSI.

The STAMP Graphics window appears with graphs of the observed log-

transformed time series and the modelled trend, seasonal, and irregular (see
Figure 3.6.12).

The seasonal component is close to zero for the months January and September, is negative
for February to August, and is positive for October to December.

= Use the menu <File, Save> or <Ctrl+S> to save these graphs, e.g. as an
Encapsulated Postcript file (*.eps). Minimize the STAMP Graphics window.

Step 5: Test of model residuals

Go back to the STAMP window and choose <Test, Residuals graphics...>

In the Residual graphics window select Residuals, Correlogram, wi't.H 1.4

Density, Histogram, Normal, QQ plot, and Write diagnostic tests.
» C(Click OK.

Figure 3.6.13 shows the standardized residuals and their correlogram, density

function, and normal probability plot as depicted by the STAMP ,graphics
window in GiveWin.
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Figure 3.6.13: Residuals and residual tests for the stochastic level deterministic
seasonal model applied to the log of UK drivers KSI.

The top left graph of Figure 3.6.13 shows that only five out of the 192 residuals exceed the 95%
confidence limits. Still, the residual corresponding to February 1983 is very extreme: -3.73.
Under the assumption of a normal distribution with zero mean and unit standard deviation, the
probability of a value smaller than -3.73 is 0.01%! From the top right graph, we learn that for 1
out of the 14 lags considered the autocorrelation is (just) outside the 95% confidence interval,
which is defined by the boundaries -2NT=-0.14 and +2NT=0.14. The bottom graphs show that
the assumption of normality of the residuals is satisfied, which confirms the normality test result
displayed in Table 3.6.6.

» Use the menu <File, Save> or <Ctrl+S> to save the graphs and minimize the
STAMP Graphics window.

In the Results window of GiveWin, the following residual test results can be
found (only part of the results are printed below):
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Goodness—-of-fit results for Residual Log_UKdriversKSI

Information criterion of Akaike AIC -5.067016
of Schwartz (Bayes) BIC -4.846457
Serial correlation statistics for Residual Log_UKdriversKSI.
Lag dF SerCorr BoxLjung ProbChi2 (dF)
1 0 0.0411
2 0 0.0332
3 1 -0.0618 1.2906 [ 0.2559]
4 2 -0.1199 4.1225 [ 0.1273]
5 3 0.0452 4.5278 [ 0.2098]
6 4 -0.0812 5.8412 [ 0.2113]
7 5 -0.0654 6.6993 [ 0.2440]
8 6 -0.1413 10.7213 [ 0.0974]
9 7 0.0105 10.7438 [ 0.1502]
10 8 -0.0667 11.6512 [ 0.1675]
11 9 0.0413 12.0002 [ 0.2133]
12 10 -0.0002 12.0002 [ 0.2850]
13 11 0.1043 14.2549 [ 0.2192]
14 12 0.0364 14.5314 [ 0.2681]

The value of the AIC is -5.07. Furthermore, the BoxLjung test statistic for the
autocorrelations of the first 14 lags shows that the residuals satisfy the
assumption of independence.

Step 6: Test of auxiliary residuals

* Go to the STAMP window again and choose <Test, Auxiliary residuals
graphics...>.

= In the Auxiliary residuals graphics window select Irregular, Level residual,
Index plot, Density, Histogram, Normal, QQ plot, Write normality tests, and
Write values exceeding (3.5).

= (Click OK.

The STAMP graphics window in GiveWin displays the auxiliary residuals of the
irregular and of the level component and their density function and normal
probability plot: see Figure 3.6.14. The output below the figure describes the
auxiliary residual test results as can be found in the Results window of GiveWin.
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Figure 3.6.14: Auxiliary residuals and corresponding tests for the stochastic level
deterministic seasonal model applied to the log of UK drivers KSI.

Normality test for IrrRes Log_UKdriversKSI

Sample Size 192

Mean 0.000027
Std.Devn. 0.998613
Skewness -0.190959
Excess Kurtosis -0.163838
Minimum -2.884350
Maximum 2.672501

Skewness Chi”2(1) 1.1669 [0.2800]
Kurtosis Chi”®2(1) 0.21474 [0.6431]
Normal-BS Chi”"2(2) 1.3816 [0.5012]
Normal-DH Chi”"2(2) 1.4114 [0.4938]

Normality test for Lv1lRes Log_UKdriversKSI

Sample Size 192

Mean -0.059080

Std.Devn. 0.992958

Skewness -0.669142

Excess Kurtosis 1.084877

Minimum -3.789216

Maximum 2.172144

Skewness Chi”2(1) 14.328 [0.0002]
Kurtosis Chi”2(1) 9.4157 [0.0022]
Normal-BS Chi”"2(2) 23.744 [0.0000]
Normal-DH Chi”2(2) 13.024 [0.0015]

Eg 6 : Large values in LvlRes Log_UKdriversKSI.
Period Value
1983. 2 -3.7892 [ 0.0001]

Both Figure 3.6.14 and the auxiliary residual tests demonstrate that the auxiliary residuals of the
irregular component satisfy the assumption of normality, whereas those of the level component
do not satisfy this assumption. The latter fact means that we must be cautious with the
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interpretation of the test statistics of individual auxiliary residuals and it underlines the
importance of looking at the graphical output (Koopman et al, 2000).

The auxiliary residual of the level component corresponding to February 1983 is extremely large
(-3.79), which is an indication of a structural break in the level component.

= Use the menu <File, Save> or <Ctrl+S> to save the graphs and minimize the
STAMP Graphics window.

Step 7: Conclusion of analysis

The residuals obtained with the analysis of the log of the monthly UK drivers
KSI from January 1969 to December 1984 with the stochastic level and
deterministic seasonal model satisfy all the model assumptions of
independence, homoscedasticity, and normality. However, the auxiliary residual
of the level component for February 1983 is found to be extremely large (-3.79),
which is an indication of a structural break in this component. Furthermore, the
auxiliary residuals of the level component do not satisfy the assumption of
normality. For these reasons, we expect that the model can be improved by
adding an intervention variable to the local level and deterministic seasonal
model. In fact, there is a very good reason why February 1983 was a special
month for road safety in the UK. It was in that month that the seatbelt law was
introduced, requiring front seat passengers in cars to wear a seatbelt. In Section
3.6.5 we will therefore investigate the effect of modelling this event by adding a
level shift intervention variable to the the local level and deterministic seasonal
model.

Step 8: Forecasting

Because the stochastic level and deterministic seasonal model for describing
the log of the monthly number of UK drivers KSI from January 1969 to
December 1984 can still be improved, as will be discussed in the following
sections, the issue of obtaining forecasts from this series is postponed until
Section 3.6.6.
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3.6.5 Intervention variables

In the previous section, we discussed that it could be worthwhile to add an
intervention variable to the stochastic level deterministic and seasonal model of
the (log of the) number of UK drivers KSI for the period January 1969 through
December 1984. The reason for this recommendation was the extremely large
value of the February 1983 auxiliary residual of the level component. As stated
in Section 3.6.4, this point in time coincides with the introduction of the seat belt
law in the UK.

Because the extremely large value concerns the auxiliary residual of the level
component, in this section we will add a level shift variable to the stochastic
level and deterministic seasonal model discussed in the previous section.

Step 1: Start of analysis and data load

In this first step of the analysis, we open GiveWin, load the data, and start

STAMP, if needed.

= |f GiveWin is not yet open, then start GiveWin2.

= |f GiveWin is already open but with another dataset than the UK drivers KSI,
then close all results, data, and graphics windows in GiveWin by clicking on
the icon with the cross in the top right corner of each window. Use the menu
<File, Open Data File...> to open the file “UKdriversKSL.in7”.

» |f GiveWin is already open and the UK drivers KSI dataset is already loaded,
then proceed to the next instruction.

The data file is loaded and displayed in a minimized window at the bottom of the

GiveWin main window. To view the data file:

= Click on the icon with the two overlapping boxes.

* Minimize the data file window again and use the menu <Modules, Start
Stamp> to start the STAMP program.

Step 2: Model Formulation

In this step, we will add a level shift in February 1983 to the stochastic level

deterministic seasonal model from the previous section. First, formulate the

model:

= In STAMP, choose the menu <Model, Formulate>.

» In the Data selection window select the variable Log_UKdriversKSI.

= Then click OK.

» In the Select components window, choose a Stochastic Level, No slope,
Irregular, and Fixed seasonal.

Next, we add the level shift:

= Click Next.
= Select the period in sample: year is 1983 and period is 2.
= Click Level.
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The text "Lvl 1983.2" appears in the list of interventions.

= Then click on the Finish button.

Step 3: Model estimation and inspection of results

= |n the Estimate Model window, select Maximum Likelihood.
= (Click OK.

The model is estimated, and the following output appears in the GiveWin
Results window:

Equation 1.
Log_UKdriversKSI = Level + Fixed seasonal + Interv + Irregular

Estimation report
Model with 2 parameters ( 1 restrictions).
Parameter estimation sample is 1969. 1 - 1984.12. (T = 192).
Log-likelihood kernel is 2.339682.
Very strong convergence in 2 iterations.
( likelihood cvg 1.328653e-015
gradient cvg 3.952394e-009
parameter cvg 5.449141e-014 )

Eg 1 : Diagnostic summary report.
Estimation sample is 1969. 1 - 1984.12. (T = 192, n = 191).
Log-Likelihood is 449.219 (-2 LogL = -898.438).

Prediction error variance is 0.00501578

Summary statistics
Log_UKdriver

Std.Error 0.070822

Normality 2.4014

H( 63) 0.75510

r( 1) 0.079936

r(l2) 0.058582

DW 1.8396

Q(12,11) 15.267

Rs"2 0.30674
Eg 1 : Estimated variances of disturbances.

Component Log_UKdriversKSI (g-ratio)
Irr 0.0037838 ( 1.0000)
Lvl 0.00047358 ( 0.1252)

» Check the results (sample period, log-likelihood, estimated variance of
disturbances) and compare them with the results from the analysis without
intervention in the previous section.

The estimation report tells that there was very strong convergence in two iterations. The
diagnostic summary report shows that the addition of the intervention has improved the fit of the
stochastic level deterministic seasonal model: the value of the log-likelihood function has
increased from 437 to 449 and the prediction error variance has decreased from 0.00550 to
0.00502 (see the previous section).
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= |Inthe STAMP window choose <Test, Further output...> in the menu.

= Select Additional output, Get steady state, Anti-log analysis, and State and
regression output.

= (Click OK.

The GiveWin Results window will display the following additional results:

Eg 1 : Estimated standard deviations of disturbances.

Component Log_UKdriversKSI (g-ratio)

Irr 0.061513 ( 1.0000)

Lvl 0.021762 ( 0.3538)

Eg 1 : Estimated coefficients of final state vector.

Variable Coefficient R.m.s.e. t-value

Lvl 7.2380 0.033960 213.13 [ 0.0000]
Sea_ 1 0.010335 0.015834 0.65272 [ 0.5147]
Sea_ 2 -0.10244 0.015814 -6.4775 [ 0.0000]
Sea_ 3 -0.064452 0.015770 -4.0869 [ 0.0001]
Sea_ 4 -0.14248 0.015736 -9.0543 [ 0.0000]
Sea_ 5 -0.052342 0.015711 -3.3315 [ 0.0010]
Sea_ 6 -0.090631 0.015696 -5.7741 [ 0.0000]
Sea_ 7 -0.042554 0.015691 -2.7119 [ 0.0073]
Sea_ 8 -0.032656 0.015696 -2.0805 [ 0.0388]
Sea_ 9 0.0040042 0.015711 0.25487 [ 0.7991]
Sea_10 0.083707 0.015736 5.3196 [ 0.0000]
Sea_11 0.18782 0.015770 11.91 [ 0.0000]
Anti-log trend analysis

Trend value at end of period is 1391.34.

Eg 1 : Estimated coefficients of explanatory variables.
Variable Coefficient R.m.s.e. t-value

Lvl 1983. 2 -0.23981 0.053072 -4.5185 [ 0.0000]

Just as in the model without intervention, the parameter estimates for the first and the ninth
month of the seasonal component do not deviate from zero in the final state. At the end of the
period, the trend value as presented by the anti-log trend analysis is 1391, which is a somewhat
lower value than in the model without intervention (1396).

New in the output are the estimated coefficients of the explanatory variables. In this case there
is only one explanatory variable which is the intervention variable for February 1983. The
estimated coefficient for the level shift is -0.240, which corresponds to a 100*(e*#%*’-1)=-21.3%
change in the number of UK drivers KSI as a result of the introduction of the seat belt law. The
coefficient is shown to be significant, but to guarantee that the t-value is reliable, we must first
check whether the model assumptions are satisfied.

= The summary statistics in the output of STAMP can be used to set up the
following table (see also Table 3.6.8 in the Methodology report):

Statistic Value  Critical 5% Assumption satisfied

value?
Independence Q(12,11) 15.3 19.68 +
r(1) 0.0799 0.14 +
r(12) 0.0586 0.14 +
Homoscedasticity H(63) 0.755 1.65 +
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Normality N 2.40 5.99 +

Table 3.6.7: Diagnostic test results for the stochastic level deterministic seasonal
model with intervention applied to the log UK drivers KSI. #Probability that statistic
exceeds critical value is 0.05.

Table 3.6.7 shows that the stochastic level and deterministic seasonal model
with an intervention variable satisfies all model assumptions. This guarantees
that the ttest for the regression coefficient of the intervention variable (see
output above) is reliable.

Step 4: Graphics of model components

= In the STAMP window choose menu <Test, Components graphics...>.
Select Trend, Seasonal, Irregular, and Smoothed.
= Click OK.

The STAMP Graphics window appears with graphs of the observed log-
transformed time series and the modelled trend, seasonal, and irregular (see
Figure 3.6.15).
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Figure 3.6.15: Observed log-transformed time series and the trend of the stochastic
level deterministic seasonal model with intervention (top graph), seasonal component
(middle graph), and irregular component (bottom graph) for the log of UK drivers KSI.

Compared to the level of the model without intervention, the level in the present model shows a
sudden decrease at the start of 1983 (see Figure 3.6.12 and 3.6.15, top graphs). This results in

a value for the irregular component in February 1983 which is considerably smaller, in absolute
terms, than in the model without intervention (bottom graphs).

= Use the menu <File, Save> or <Ctrl+S> to save these graphs, e.g. as an
Encapsulated Postcript file (*.eps). Minimize the STAMP Graphics window.

Step 5: Test of model residuals

Go back to the STAMP window and choose <Test, Residuals graphics...>.
In the Residual graphics window select Residuals, Correlogram, with 14,

Density, Histogram, Normal, QQ plot, and Write diagnostic tests.
= Click OK.

Figure 3.6.16 shows the standardized residuals and their correlogram, density

function, and normal probability plot as depicted in the STAMP graphics window
of GiveWin.
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Figure 3.6.16: Residuals and residual tests for the stochastic level deterministic
seasonal model with intervention applied to the log of UK drivers KSI.

When we compare the top left graphs of Figure 3.6.13 and 3.6.16, we can see that the
extremely large residual in February 1993 has disappeared in the latter figure because of
adding the intervention variable. In the model with intervention variable only seven residuals
(3.6%) are outside the 95% confidence interval. However, none of them is extremely large.

From the top right graph, we learn that for 2 out of the first 14 lags the autocorrelation is (just)
ouzide the 95% confidence interval, which is defined by the boundaries -2AT=-0.14 and
+2ANT=0.14.

The bottom graphs show that the assumption of normality of the residuals is very well satisfied,
which confirms the normality test results in Table 3.6.7.

Use the menu <File, Save> or <Ctrl+S> to save the graphs and minimize the
STAMP Graphics window.

In the Results window of GiveWin, the following residual test results can be
found (only part of the results are printed below):
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Goodness—-of-fit results for Residual Log_UKdriversKSI

Information criterion of Akaike AIC -5.149332
of Schwartz (Bayes) BIC -4.911807
Serial correlation statistics for Residual Log_UKdriversKSI.
Lag dF SerCorr BoxLjung ProbChi2 (dF)
1 0 0.0799
2 0 0.0449
3 1 -0.0809 2.9183 [ 0.0876]
4 2 -0.1449 7.0597 [ 0.0293]
5 3 0.0232 7.1660 [ 0.0668]
6 4 -0.0716 8.1885 [ 0.0849]
7 5 -0.0489 8.6681 [ 0.1231]
8 6 -0.1351 12.3438 [ 0.0547]
9 7 -0.0049 12.3487 [ 0.0897]
10 8 -0.0541 12.9445 [ 0.1138]
11 9 0.0888 14.5601 [ 0.1037]
12 10 0.0586 15.2669 [ 0.1226]
13 11 0.1458 19.6698 [ 0.0501]
14 12 0.0201 19.7541 [ 0.0719]

The addition of the intervention to the model has improved the goodness-of-fit: the AIC has
decreased (from -5.07 to -5.15) as well as the BIC (from -4.85 to -4.91).

Step 6: Test of auxiliary residuals

* Go to the STAMP window again and choose <Test, Auxiliary residuals
graphics...>.

= In the Auxiliary residuals graphics window select Irregular, Level residual,
Index plot, Density, Histogram, Normal, QQ plot, Write normality tests, and
Write values exceeding (3.5).

= (Click OK.

The STAMP graphics window in GiveWin displays the auxiliary residuals of the
irregular and of the level component and their density function and normal
probability plot: see Figure 3.6.17.

» Use the menu <File, Save> or <Ctrl+S> to save these graphs and minimize
the STAMP Graphics window.

{7 Transport
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Figure 3.6.17: Auxiliary residuals and corresponding tests for the stochastic level and
deterministic seasonal model with intervention applied to the log of UK drivers KSI.

The following output describes the auxiliary residual test results for normality as
can be found in the Results window of GiveWin.

Normality test for IrrRes Log_UKdriversKSI

Sample Size 192

Mean -0.000521

Std.Devn. 0.999144

Skewness -0.081441

Excess Kurtosis -0.412446

Minimum -2.424978

Maximum 2.528211

Skewness Chi”2(1) 0.21225 [0.6450]
Kurtosis Chi”2(1) 1.3609 [0.2434]
Normal-BS Chi”2(2) 1.5731 [0.4554]
Normal-DH Chi”2(2) 1.2611 [0.5323]
Normality test for Lv1lRes Log_UKdriversKSI
Sample Size 192

Mean 0.039095

Std.Devn. 0.991080

Skewness -0.656959

Excess Kurtosis 0.780304

Minimum -3.181119

Maximum 2.053959

Skewness Chi”®2(1) 13.811 [0.0002]
Kurtosis Chi”2(1) 4.871 [0.0273]
Normal-BS Chi”2(2) 18.682 [0.0001]
Normal-DH Chi”2(2) 13.017 [0.0015]

Both Figure 3.6.17 and the auxiliary residual tests demonstrate that the auxiliary residuals of the
irregular component satisfy the assumption of normality, whereas those of the level component
do not satisfy this assumption. This was also the case in the model without intervention. From
the middle right graph, we see that in 1973 and 1974 there are too many large negative auxiliary
residuals of the level component. As mentioned above, this means that we must be careful with
the interpretation of the test statistics for the level component's auxiliary residuals. However, the
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extremely large value of the auxiliary residual of the level component for February 1983 that we
observed in Figure 3.6.14 has disappeared in Figure 3.6.17. This is the result of including the
level shift intervention variable in the model.

Step 7: Conclusion of analysis

The residuals obtained with the analysis of the log of the monthly UK drivers
KSI from January 1969 to December 1984 with the stochastic level and
deterministic seasonal model with intervention variable satisfy all the model
assumptions of independence, homoscedasticity, and normality. The addition of
the level shift intervention variable for February 1983 has improved the fit of the
model, and the extremely large value of the auxiliary residual of the level
component observed in the previous analysis has disappeared in the present
one. The regression coefficient for the intervention variable is significant, and
indicates that the introduction of the seat belt law resulted in a 21.3% reduction
in the number of UK drivers KSI. However, the auxiliary residuals of the level
component still do not satisfy the assumption of normality. Therefore, we must
be careful with the interpretation of test statistics with respect to structural level
breaks.

In Section 3.6.6, we will extend the model with yet another component: a
continuous explanatory variable.

Step 8: Forecasting

Because in the next section we will extend the stochastic level and deterministic
seasonal model including an intervention variable with yet another explanatory
variable, we postpone the forecasting to that section.
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3.6.6 Explanatory variables

In the previous section, we extended the stochastic level and deterministic
seasonal model for the analysis of the log of the number of UK drivers KSI for
the period January 1969 through December 1984 with an intervention variable.
In this section, we will add yet another component: a continuous explanatory
variable.

This continuous explanatory variable is the log of the monthly prices of petrol in
the UK in the period January 1969 to December 1984 of which is assumed that
it may have affected car mobility and thus also the number of drivers KSI. The
seat belt law intervention from the previous section will be kept in the model.

Step 1: Start of analysis and data load

If needed, we wil first open GiveWin, load the data, and start STAMP.

= |f GiveWin is not yet open, then start GiveWin2.

= |f GiveWin is already open from a previous exercise but with another dataset
than the UK drivers KSI, then close all results, data, and graphics windows
in GiveWin by clicking on the icon with the cross in the top right corner of
each window. Use the menu <File, Open Data File...> to open the file
“UKdriversKSL.in7”.

» |f GiveWin is already open and the UK drivers KSI dataset is already loaded,
then proceed with the next instruction.

The data file is loaded and displayed in a minimized window at the bottom of the

GiveWin main window. To view the data file:

= Click on the icon with the two overlapping boxes.

* Minimize the data file window again and use the menu <Modules, Start
Stamp> to start the STAMP program.

Step 2: Model formulation

In this step, we will add the petrol price variable to the stochastic level and

deterministic seasonal model with seat belt law intervention from the previous

section:

» In STAMP, choose the menu <Model, Formulate>.

» In the Data selection window select the variable Log_UKdriversKSI and click
Add.

= Also select the variable Log_PetrolPrice and click Add.

= Then click OK.

*» In the Select components window, choose a Stochastic Level, No slope,
Irregular, and Fixed seasonal.

To add the level shift intervention variable for February 1983:
= Click Next.
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= Select the the point in the series: year is 1983 and period is 2.

= (Click Level.

= Then click on the Finish button.

Step 3: Model estimation and inspection of results

= |n the Estimate Model window, select Maximum Likelihood.

= Click OK.

The model is estimated, and the following output appears in the GiveWin

Results window:

Equation 1.

Log_UKdriversKSI = Level
Irregular

Estimation report
Model with 2 parameters (

+ Fixed

1 restrictions).
Parameter estimation sample is 1969.

Log-likelihood kernel is 2.342043.

Very strong convergence in

2 iterations.

( likelihood cvg 3.792323e-016
gradient cvg 1.065814e-009
parameter cvg 7.219832e-009 )

Eg 1 : Diagnostic summary report.

Estimation sample is 1969.
Log-Likelihood is 449.672

1 - 1984.12.
(-2 LogL = -899.345).

Prediction error variance is 0.00483573

Summary statistics
Log_UKdriver

Std.Error 0.069539

Normality 1.9020

H( 63) 0.87770

r( 1) 0.10275

r(l2) 0.052579

DW 1.7930

Q(12,11) 18.706

Rs”2 0.33163
Eg 1 : Estimated variances of disturbances.
Component Log_UKdriversKSI (g-ratio)
Irr 0.0040344 ( 1.0000)
Lvl 0.00026772 ( 0.0664)

seasonal

1 - 1984.12.

(T

+ Expl vars + Interv +

= 192).

= 191).

= Check the results (sample period, log-likelihood, estimated variance of
disturbances) and compare them with the results from the analysis without
intervention in the previous section.

We have very strong convergence in two iterations. The diagnostic summary report shows that
the addition of the petrol price as explanatory variable has improved the stochastic level and
deterministic seasonal model with seat belt law intervention: the value of the log-likelihood
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function has increased from 449 to 450 and the prediction error variance has decreased from
0.00502 to 0.00484.

» Inthe STAMP window choose <Test, Further output...> in the menu.

= Select Additional output, Get steady state, Anti-log analysis, and State and
regression output.

= Click OK.

The GiveWin Results window displays the following additional results:

Eg 1 : Estimated standard deviations of disturbances.

Component Log_UKdriversKSI (g-ratio)

Irr 0.063517 ( 1.0000)

Lvl 0.016362 ( 0.2576)

Eg 1 : Estimated coefficients of final state vector.

Variable Coefficient R.m.s.e. t-value

Lvl 6.6317 0.21428 30.948 [ 0.0000]
Sea_ 1 0.0085360 0.015860 0.5382 [ 0.5911]
Sea_ 2 -0.10336 0.015836 -6.5267 [ 0.0000]
Sea_ 3 -0.064435 0.015801 -4.0778 [ 0.0001]
Sea_ 4 -0.14119 0.015783 -8.9458 [ 0.0000]
Sea_ 5 -0.052945 0.015757 -3.3601 [ 0.0009]
Sea_ 6 -0.088490 0.015764 -5.6135 [ 0.0000]
Sea_ 7 -0.039156 0.015787 -2.4803 [ 0.0140]
Sea_ 8 -0.031078 0.015754 -1.9727 [ 0.0500]
Sea_ 9 0.0039760 0.015756 0.25234 [ 0.8010]
Sea_10 0.080770 0.015815 5.1073 [ 0.0000]
Sea_11 0.18615 0.015816 11.769 [ 0.0000]
Anti-log trend analysis

Trend value at end of period is 758.765.

Eg 1 : Estimated coefficients of explanatory variables.
Variable Coefficient R.m.s.e. t-value
Log_PetrolPrice -0.27721 0.098431 -2.8163 [ 0.0054]
Lvl 1983. 2 -0.23757 0.046430 -5.1167 [ 0.0000]

Just as in the model with seat belt law intervention but without petrol price as explanatory
variable, the parameter estimates for the first and the ninth month of the seasonal component
do not deviate from zero in the final state. At the end of the period, the trend value as presented
by the anti-log trend analysis is 757, which is smaller than in the model with seat belt law
intervention but without petrol price variable (1391). This large difference in the trend value is
caused by the introduction of the explanatory variable, which explains part of the trend.

The regression coefficients for the seat belt law intervention (-0.23757) and for the log of petrol
price (-0.27721) are both significant in this model. However, to guarantee that the t-values are
reliable, we must first test the model assumptions.

= The summary statistics in the output of STAMP can be used to set up the
following table (see also Table 3.6.10 in the Methodology report):

Statistic Value  Critical 5% Assumption satisfied

value®
Independence Q(12,11) 18.7 19.68 +
r(1) 0.102 0.14 +
r(12) 0.0526 0.14 +
Homoscedasticity H(63) 0.878 1.65 +
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Normality N 1.90 5.99 +

Table 3.6.8: Diagnostic test results for the stochastic level and deterministic seasonal

model with intervention and explanatory variable applied to the log of UK drivers KSI.
2Probability that statistic exceeds critical value is 0.05.

Table 3.6.8 shows that the stochastic level and deterministic seasonal model
with intervention and explanatory variable satisfies all model assumptions. This
guarantees that the t-tests for the regression coefficients of the intervention
variable and the explanatory variable (see output above) are reliable. According
to this analysis, the introduction of the seat belt law resulted in a 100*(e %" —
1) = -21.1% change in the number of UK drivers KSI (which is virtually identical
to what we found in the previous section), while the regression coefficient for log

petrol price indicates that a 1% rise in petrol price was associated with a 0.28%
reduction in the number of UK drivers KSI.

Step 4: Graphics of model components

In the STAMP window choose menu <Test, Components graphics...>.

Select Trend plus Xs, Seasonal, Irregular, and Smoothed.
= (Click OK.

The STAMP Graphics window appears with graphs of the observed log-

transformed time series and the modelled trend, seasonal, and irregular (see
Figure 3.6.18).
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Figure 3.6.18: Observed log-transformed time series and the trend of the stochastic
level deterministic seasonal model with intervention and explanatory variable (top
graph), seasonal component (middle graph), and irreqular component (bottom graph)
for the log of UK drivers KSI.

Comparison of Figures 3.6.15 and 3.6.18 leads to the conclusion that there is no difference
between the trend, seasonal, and irregular components of the model with and without petrol
price as explanatory variable. The difference between the models lies in the composition of the
trend component, which will be shown below.

= Use the menu <File, Save> or <Ctrl+S> to save these graphs, e.g. as an
Encapsulated Postcript file (*.eps). Minimize the STAMP Graphics window.

Next, we will make a graph of the part of trend which is explained by the log of
petrol price:

* In the STAMP window choose menu <Test, Components graphics...>.

Select Trend, Trend plus Xs, and Smoothed.

= Click OK.

The STAMP Graphics window appears with graphs of the observed log-
transformed time series and the modelled trend without and with the explained
portion (see Figure 3.6.19).
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Figure 3.6.19: Observed log-transformed time series and the trend of the stochastic
level deterministic seasonal model with intervention and explanatory variable for the log
of UK drivers KSI, without the explained portion (top graph) and with the explained
portion (bottom graph).

As can be seen in Figure 3.6.19, in the model with explanatory variable a considerable part of
the trend is explained by the log of petrol price, whereas the remaining part of the trend is a
stochastic level including the effect of the seat belt intervention. In the model without
explanatory variable, the trend entirely consists of a stochastic level plus seat belt intervention
effect.
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= Use the menu <File, Save> or <Ctrl+S> to save these graphs, e.g. as an
Encapsulated Postcript file (*.eps). Minimize the STAMP Graphics window.

Step 5: Test of model residuals

= Go back to the STAMP window and choose <Test, Residuals graphics...>.

*» In the Residual graphics window select Residuals, Correlogram, with 14,
Density, Histogram, Normal, QQ plot, and Write diagnostic tests.

= (Click OK.

Figure 3.6.20 shows the standardized residuals and their correlogram, density
function, and normal probability plot as depicted by the STAMP graphics
window in GiveWin.

1.0 Correlogram
Residual Log_UKdriversKSI| ‘ T Residual Log_UKdriversKSI
| [

, =

il
il
\

\
i

|
|

L
1+ ‘H.«“

I
\‘ (.
ML
0 ‘\‘\ | [

2+
1 L 1 L L L L 1 .
. 10 15
Density ~ QQ plot
04 {—— N=0965)] VaRNm 2 -
i AT ]
03F 74 \ s
| . :
021 / L
i -1
L / L
0.1+
i -2
I = A I O Y A I 7‘\HH\HH\HH\HH\H
-3 -2 -1 0 -2 -1 0 1 2

Figure 3.6.20: Residuals and residual tests for the stochastic level and deterministic
seasonal model with intervention and explanatory variable applied to the log of UK
drivers KSI.

When we compare the residuals and the autocorrelations for lags 1 to 14 of this model including
intervention and explanatory variable with the residuals and autocorrelations of the model
without explanatory variable (see the top left graphs of Figures 3.6.16 and 3.6.20), we see
almost no differences. However, from the bottom graphs of Figures 3.6.16 and 3.6.20 we can
conclude that the distribution of the residuals is more close to the normal distribution. This
conclusion is confirmed by the Doornik-Hansen statistic, whose value is smaller for this model
(1.90, see Table 3.6.8) than for the model without explanatory variable (2.40, see Table 3.6.7).
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= Use the menu <File, Save> or <Ctrl+S> to save the graphs and minimize the
STAMP Graphics window.

In the Results window of GiveWin, the following residual test results can be
found (only part of the results are printed below):
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Goodness—-of-fit results for Residual Log_UKdriversKSI
Information criterion of Akaike AIC -5.175474
of Schwartz (Bayes) BIC -4.920982

Serial correlation statistics for Residual Log_UKdriversKSI.

Lag dF SerCorr BoxLjung ProbChi2 (dF)
1 0 0.1028
2 0 0.0582
3 1 -0.0805 3.9804 [ 0.0460]
4 2 -0.1456 8.1591 [ 0.0169]
5 3 0.0203 8.2410 [ 0.0413]
6 4 -0.0653 9.0899 [ 0.0589]
7 5 -0.0583 9.7707 [ 0.0820]
8 6 -0.1682 15.4709 [ 0.0169]
9 7 -0.0467 15.9130 [ 0.0259]
10 8 -0.0856 17.4054 [ 0.0262]
11 9 0.0598 18.1372 [ 0.0336]
12 10 0.0526 18.7065 [ 0.0442]
13 11 0.1513 23.4503 [ 0.0153]
14 12 0.0237 23.5674 [ 0.0233]

The addition of the petrol price variable to the model has improved the goodness-of-fit: the AIC
has decreased (from -5.15 to -5.17) as well as the BIC (from -4.91 to -4.92).

Step 6: Test of auxiliary residuals

* Go to the STAMP window again and choose <Test, Auxiliary residuals
graphics...>.

= In the Auxiliary residuals graphics window select Irregular, Level residual,
Index plot, Density, Histogram, Normal, Write normality tests, and Write
values exceeding (3.5).

= (Click OK.

The STAMP graphics window in GiveWin displays the auxiliary residuals of the
irregular and of the level component and their density function and normal
probability plot: see Figure 3.6.21.
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Figure 3.6.21: Auxiliary residuals and corresponding tests for the stochastic level
deterministic seasonal model with intervention and explanatory variable applied to the
log of UK drivers KSI.

The following output describes the auxiliary residual test results for normality as
can be found in the Results window of GiveWin.

Normality test for IrrRes Log_UKdriversKSI

Sample Size 192

Mean -0.000458
Std.Devn. 0.999195
Skewness -0.063404
Excess Kurtosis -0.402381
Minimum -2.408254
Maximum 2.494782

Skewness Chi”2(1) 0.12864 [0.7198]
Kurtosis Chi”2(1) 1.2953 [0.2551]
Normal-BS Chi”2(2) 1.4239 [0.4907]
Normal-DH Chi”"2(2) 1.055 [0.5901]

Normality test for LvlRes Log_UKdriversKSI

Sample Size 192

Mean 0.080397
Std.Devn. 0.995941
Skewness -0.481094
Excess Kurtosis 0.144688
Minimum -2.756100
Maximum 2.427820

Skewness Chi”2(
Kurtosis Chi”2(
Normal-BS Chi”"2(
Normal-DH Chi”"2(

1) 7.4065 [0.0065]
1) 0.16748 [0.6824]
2) 7.5739 [0.0227]
2) 8.305 [0.0157]
Both Figure 3.6.21 and the auxiliary residual tests demonstrate that the auxiliary residuals of the
irregular component satisfy the assumption of normality, whereas those of the level component
do not satisfy this assumption. This was also the case in the model with intervention but without
the petrol price explanatory variable. From the bottom left graph, we see that in 1973 and 1974
there are quite a number of large negative auxiliary residuals of the level component. As
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mentioned in the previous section, this means that we must be careful with the interpretation of
the test statistics for the auxiliary residuals corresponding to the level component.

Step 7: Conclusion of analysis

In this section, we extended the stochastic level deterministic seasonal model
with the seat belt intervention and the log of petrol price as explanatory variable
and applied this model to the log of the monthly UK drivers KSI from January
1969 to December 1984. The residuals obtained with the analysis of this model
satisfy all the model assumptions of independence, homoscedasticity, and
normality. However, the auxiliary residuals of the level component do not satisfy
the assumption of normality. Therefore, we must be careful with the
interpretation of test statistics with respect to structural level breaks.

According to this analysis, the introduction of the seat belt law resulted in a
100*(e®%*"*" — 1) = -21.1% change in the number of UK drivers KSI, while a 1%
rise in petrol price was associated with a 0.28% reduction in the number of UK
drivers KSI.

Step 8: Forecasting

Since the stochastic level deterministic seasonal model with the seat belt
intervention and the log of petrol price as explanatory variable provides an
appropriate description and explanation of the log of the monthly UK drivers KSI
series, as a final step in the analysis we will make forecasts for this series. By
performing an anti-log analysis, the forecasts will also be re-expressed in terms
of the original count data.

As in Section 3.6.6 of the Methodology report, we will make in-sample forecasts
so as to validate the model. To this end, the stochastic level and deterministic
seasonal model with the seat belt intervention and the log of petrol price as
explanatory variable is fitted to the log of the monthly number of UK drivers KSI,
but now only for the period January 1969 to June 1984. So, we now do not
include the last six observations (i.e., the last half year) of the UK drivers KSI
series in the analysis. The results of the analysis without the months July 1984
through December 1984 are very similar to the results presented earlier in this
section for the complete series.

» Repeat steps 1 and 2 of this section.

= Then, go to step 3: in the Estimate Model window, select Maximum
Likelihood.

= Choose Less forecasts 6.

= (Click OK.

= Go through steps 4 to 7 to check the model assumptions.

Next, we use these results to obtain forecasts for July 1984 through December
1984 and compare the forecasts with the observed number of UK drivers KSI
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for this period. The actual values of the log of the petrol price are used for
making the forecasts.

Go to the STAMP window and choose <Test, Forecasting...>.

In the Forecasting window select 6 as the number of forecasts, PlusXs,

Seasonal, Use available database Xs, and Write forecasts Y.
= (Click OK.

The STAMP graphics window in GiveWin displays the log of the UK drivers KSI
series from January 1976 until June 1984 extended with the six-months
forecasts including their 70% confidence interval (plus and minus one estimated
standard deviation) in the top figure; the log of the UK drivers KSI and the
extrapolated trend are shown in the middle figure, and the extrapolated
seasonal is displayed in the bottom figure, see Figure 3.6.22.

The GiveWin Results window contains the forecasted values for July 1984 to

December 1984, their root mean square errors, and the lower and upper
bounds of the 70% confidence intervals.
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Figure 3.6.22: Six-months forecasts (July-December 1984) of the stochastic level and

deterministic seasonal model with intervention and explanatory variable applied to the
log of UK drivers KSI, January 1969 — June 1984.

For the forecast, the fixed seasonal is set through to the forecast range (bottom graph). The
stochastic level part of the trend is set through as a horizontal line, whereas the explained part
of the trend is extrapolated by multiplying the log of the petrol price with the corresponding

regression coefficient. The total forecast is obtained by adding up the forecasts for the trend and
the seasonal.

Use the menu <File, Save> or <Ctrl+S> to save these graphs, e.g. as an
Encapsulated Postcript file (*.eps). Minimize the STAMP Graphics window.
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In Figure 3.6.23, the observed number of UK drivers KSI (not their logs) are
compared with the forecasts (also in absolute numbers). The figure also
displays the 90% confidence limits, determined as the forecasted values plus
and minus 1.64 times the root mean square error (see also Section 3.6.6 of the
Methodology report). As can be seen in Figure 3.6.23 the observed numbers of
UK drivers KSI for July-December 1984 are all located within the 90%
confidence limits of the forecasts. This is a good sign because it means that
none of the observed values significantly deviates from the forecasts in this
period.
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Figure 3.6.23: Observed number of UK drivers KSI in 1984, forecasts of the stochastic
level and deterministic seasonal model with intervention and explanatory variable, and
90% confidence interval.

To display the forecasts in terms of absolute numbers in STAMP, we apply an

anti-log analysis:

= Again go to the STAMP window and choose <Test, Forecasting...>.

» In the Forecasting window select 6 as the number of forecasts, PlusXs,
Modified anti-log analysis, Use available database Xs, and Write forecasts
Y.

= Click OK.

The STAMP graphics window in GiveWin displays the original observations
from January 1976 until June 1983 extended with the six-months forecasts with
70% confidence interval (plus and minus one estimated standard deviation) in
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the top figure and the original observations and the extrapolated trend in the
bottom figure: see Figure 3.6.24.

In the Results window of GiveWin the following forecasts for the original
observed time series have been added:

Period Forecast R.m.s.e. - Rmse + Rmse
1984. 7 1262.9 94.991 1167.9 1357.9
1984. 8 1270.3 97.608 1172.7 1367.9
1984. 9 1311.2 102.84 1208.3 1414.0
1984.10 1406.1 112.49 1293.7 1518.6
1984.11 1565.8 127.67 1438.1 1693.5
1984.12 1659.1 137.79 1521.3 1796.9

The list of forecast results gives for each time point the value of the forecast, its
standard error, and the lower and upper limit of the 70% confidence interval.
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Figure 3.6.24: Anti-logged six-months forecasts (July-December 1984) of the stochastic
level and deterministic seasonal model with intervention and explanatory variable
applied to the log of UK drivers KSI, January 1969 — June 1984.
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3.6.7 Conclusion state space models

This chapter showed examples of the application of state space analysis to road
safety data. State space analysis was used to describe the development of road
unsafety, to explain part of this development by adding interventions or
explanatory variables, and to make forecasts of road unsafety.

For the analysis of a new road safety dataset, we recommend to first analyse
the data on fatalities, casualties, drivers KSI, etc. by going through analysis
steps 1 to 7 as presented in this chapter. The most efficient way to find the best
fitting model is to start from a stochastic level and a stochastic slope
component. If there is possible seasonality, e.g. in the case of quarterly,
monthly, or weekly data, a dummy or trigonometric seasonal should be included
in the model. Then, the estimated variances of disturbances indicate whether
the components should be treated stochastically or deterministically. Next, if the
final state value of a deterministic component is not significantly different from
zero, then the component can be removed from the model.

Always carefully check whether the residuals of the model satisfy the model
assumptions of serial independence, homoscedasticity, and normality. The
statistics as presented in Table 3.6.1, for example, can be used for that
purpose. However, one should not only rely on these statistical tests, but also
make use of graphical tests, like the plot of the standardised residuals, the
correlogram, the normal density diagram, and the normal probability plot.

The auxiliary residuals of the irregular component are useful to detect outlier
observations and the auxiliary residuals of the level, slope, and seasonal
components can be employed to find structural breaks in the respective level,
slope, and seasonal. The auxiliary residuals should be tested for normality, by
using statistical tests (e.g., the Doornik-Hansen statistic) and graphical output
as the auxiliary residual plot, the normal density diagram, and the normal
probability plot. If the auxiliary residuals of a component are not normally
distributed, then this can be interpreted as a warning that the tests of outliers or
structural breaks should be interpreted with care.

With state space analysis, forecasts can be made for short and long periods
ahead. In doing this, one should be attentive to the fact that the forecasts totally
rely on setting through the dynamics of the time series from the past to the
future, at least if no additional information regarding the future development of
explanatory variables is added. A very useful property of state space analysis is
that it produces confidence intervals for the forecasts, which provide insight in
the range of possible future values. In general, these ranges become
impressively wide when the time span between the forecast and the last
observation grows. This prevents the user of state space analysis from drawing
too firm conclusions and helps to put the forecast results into perspective.
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Chapter 4 - Conclusion

The present document constitutes the practical part of the best practice advice
for the analysis of complex data structures by Work Package 7 of the SafetyNet
project. This manual is intimately linked to D7.4, “Multilevel modelling and time
series analysis in traffic research — A methodology”. While in the methodology
report the emphasis is on theoretical background information, the manual gives
practical instructions for the conduction of multilevel and time series analyses
on the basis of user friendly software. Like the methodology report, this manual
is divided into two main chapters each dedicated to one broad family of
analyses, multilevel modelling and time series analysis.

In Chapter 2, first an overview is given over the various multilevel models
presented in this deliverable. Moreover the software used in this deliverable and
other available multilevel software is discussed (Section 2.1). Multilevel
modelling is then introduced with the simplest case (Section 2.2): A linear
variable (speed of a car) was predicted by another linear variable (length). In
that example the individual cars constituted the first level, a second level was
given by the road sites at which the speed was measured. It was also
investigated whether the regions had an effect on the speed measurements (i.e.
whether there was a third level), however, this was not the case.

Often in road safety research, variables are not linear. Therefore the linear
models are put into the framework of the Generalised Linear Model that allows
to model variables from other distributions, for example binary response
variables, as well. As an example of a binary response variable, the data from
an alcohol study are presented, indicating whether a driver had a BAC above
the legal limit or not (Section 2.3.2). The individual drivers were the first level,
and again, the road site at which the alcohol level was tested constituted the
second level and it was demonstrated that first-level as well as second-level
variables could explain some of the variation in drink-driving. This data could
also be analysed as multinomial-response data with 3 categories (BAC<.05,
.05>BAC>.08, and BAC>.08) as demonstrated in Section 2.3.3. In this section it
is demonstrated how this type of data can be considered as multivariate
response structures and can be implemented in a multilevel model.

The number of accidents can be assumed to be Poisson-distributed and in
Section 2.3.4 it is demonstrated how the numbers of fatal accidents can be
predicted by law-enforcement measures. The first level in this analysis was
given by the counties in which the number of fatalities had been established and
it was shown that this number varied across regions (the second level) and that
the effect that alcohol and speed controls had also varied across regions.

Often in road safety research, the same individual or unit is measured a number
of times subsequently. Multilevel modelling can be used for such longitudinal
data. This was demonstrated in Section 2.5 with a simulated data set of driving
scores taken over 6 consecutive measurements. In this case, the individual
measurements constituted the first level and the individuals from whom the



3.6 State space models

measurements were taken formed the second level. It was demonstrated how
this technique allows the inclusion of predictors at the measurement level (i.e.
number of km driven at time of measurement) as well as at the individual level
(e.g. age at acquirement of driver’s licence).

Similarly to a structure of repeated measurements, multilevel models can also
serve to analyse multiple responses or measurements from the same individual
unit. This was demonstrated in Section 2.4, where accident numbers and fatality
numbers were predicted simultaneously by law-enforcement measures in a
multivariate model. The multivariate response structure was set up, so that the
number of fatalities and the number of accidents jointly formed the data vector.
In this case the indicator for the lowest level does not correspond to the unit of
measurement (the counties) but to an indicator specifying the type of response
given (number of accidents or number of fatalities).

The topic of Chapter 3 is the analysis of road safety time series data. In the
introduction (Section 3.1) a short overview is given over the different methods
as well as the software used in this manual and other available software.

The first time series approach discussed is the well known linear regression
approach. Although technically not a specific time series analysis method, due
to the fact that it is well known, it appeared this method is suitable to
demonstrate the key issues with time series data (in road safety) in an
environment familiar to many readers. It is demonstrated that the ordinary linear
regression model is not suitable for the number of fatalities in Austria. In fact,
both the heteroscedasticity and the independence assumption have to be
questioned.

Next, the ARMA-type section demonstrates how the examples discussed in the
methodology report can be fit using SPSS. Details about the Norway fatalities
dataset, UK-KSI drivers and the French fatalities examples are given. Finally, in
the state space section, the model properties are discussed using examples
based on Norwegian and Finnish fatality data. Finally, more extensive models
are developed based on the UK-KSI data.

To conclude, a wide range of examples of road safety data analyses was
presented in a very detailed way, allowing the reader to understand the
necessary decisions about distributional assumptions, variables included, and
estimation methods chosen. The data files used are included so that each
action and output can be traced by the reader. The interpretations are directly
linked to the output, so that they can serve as examples enabling the reader to
interpret the output for the same type of analysis with a different set of data.

Together with the methodology report, D7.4, this manual forms the best practice
for the analysis of complex data structures. The reader should have understood
the necessity to check the assumptions underlying the statistical analyses used,
and if necessary to use methods like multilevel modelling and time series
analyses that explicitly represent complex data structures and thus allow
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researchers conduct valid analyses and gain more information about the
structure itself.
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